BCG-booster vaccination with HSP90-ESAT-6-HspX-RipA multivalent subunit vaccine confers durable protection against hypervirulent Mtb in mice

Bagcchi, S. WHO’s global tuberculosis report 2022. Lancet Microbe 4, e20 (2023).

Article  Google Scholar 

Di Gennaro, F. et al. Increase in tuberculosis diagnostic delay during first wave of the COVID-19 pandemic: data from an Italian Infectious Disease Referral Hospital. Antibiotics 10, 272 (2021).

Article  PubMed Central  Google Scholar 

Comella-Del-Barrio, P., De Souza-Galvao, M. L., Prat-Aymerich, C. & Dominguez, J. Impact of COVID-19 on tuberculosis control. Arch. Bronconeumol. 57, 5–6 (2021).

Article  Google Scholar 

Excler, J. L., Saville, M., Berkley, S. & Kim, J. H. Vaccine development for emerging infectious diseases. Nat. Med. 27, 591–600 (2021).

Article  CAS  Google Scholar 

World Health, O. BCG vaccine: WHO position paper, February 2018 - Recommendations. Vaccine 36, 3408–3410 (2018).

Article  Google Scholar 

Lobo, N. et al. 100 years of Bacillus Calmette-Guerin immunotherapy: from cattle to COVID-19. Nat. Rev. Urol. 18, 611–622 (2021).

Article  CAS  PubMed Central  Google Scholar 

Bellini, C. & Horvati, K. Recent advances in the development of protein- and peptide-based subunit vaccines against tuberculosis. Cells 9, 2673 (2020).

Article  CAS  PubMed Central  Google Scholar 

Tait, D. R. et al. Final analysis of a trial of M72/AS01(E) vaccine to prevent tuberculosis. N. Engl. J. Med. 381, 2429–2439 (2019).

Article  CAS  Google Scholar 

Nemes, E. et al. Prevention of M. tuberculosis infection with H4:IC31 vaccine or BCG revaccination. N. Engl. J. Med. 379, 138–149 (2018).

Article  CAS  PubMed Central  Google Scholar 

Choi, Y. H. et al. Safety and immunogenicity of the ID93 + GLA-SE tuberculosis vaccine in BCG-vaccinated healthy adults: a randomized, double-blind, placebo-controlled phase 2 trial. Infect. Dis. Ther. 12, 1605–1624 (2023).

Article  PubMed Central  Google Scholar 

Dijkman, K. et al. A protective, single-visit TB vaccination regimen by co-administration of a subunit vaccine with BCG. NPJ Vaccines 8, 66 (2023).

Article  CAS  PubMed Central  Google Scholar 

Singh, S., Saraav, I. & Sharma, S. Immunogenic potential of latency associated antigens against Mycobacterium tuberculosis. Vaccine 32, 712–716 (2014).

Article  CAS  Google Scholar 

Kaufmann, S. H. The contribution of immunology to the rational design of novel antibacterial vaccines. Nat. Rev. Microbiol. 5, 491–504 (2007).

Article  CAS  Google Scholar 

Day, T. A. et al. Safety and immunogenicity of the adjunct therapeutic vaccine ID93 + GLA-SE in adults who have completed treatment for tuberculosis: a randomised, double-blind, placebo-controlled, phase 2a trial. Lancet Respir. Med. 9, 373–386 (2021).

Article  CAS  Google Scholar 

Suliman, S. et al. Dose optimization of H56:IC31 vaccine for tuberculosis-endemic populations. A double-blind, placebo-controlled, dose-selection trial. Am. J. Respir. Crit. Care Med. 199, 220–231 (2019).

Article  CAS  Google Scholar 

Didierlaurent, A. M. et al. Adjuvant system AS01: helping to overcome the challenges of modern vaccines. Expert Rev. Vaccines 16, 55–63 (2017).

Article  CAS  Google Scholar 

Ko, A. et al. Comparison of the adjuvanticity of two adjuvant formulations containing de-O-acylated lipooligosaccharide on Japanese encephalitis vaccine in mice. Arch. Pharm. Res. 41, 219–228 (2018).

Article  CAS  Google Scholar 

Ko, A. et al. Potentiation of Th1-type immune responses to Mycobacterium tuberculosis antigens in mice by cationic liposomes combined with de-O-acylated lipooligosaccharide. J. Microbiol. Biotechnol. 28, 136–144 (2018).

Article  CAS  Google Scholar 

Wui, S. R. et al. Efficient induction of cell-mediated immunity to varicella-zoster virus glycoprotein E co-lyophilized with a cationic liposome-based adjuvant in mice. Vaccine 37, 2131–2141 (2019).

Article  CAS  Google Scholar 

Wui, S. R. et al. The effect of a TLR4 agonist/cationic liposome adjuvant on varicella-zoster virus glycoprotein E vaccine efficacy: antigen presentation, uptake, and delivery to lymph nodes. Pharmaceutics 13, 390 (2021).

Article  CAS  PubMed Central  Google Scholar 

Moliva, J. I. et al. Selective delipidation of Mycobacterium bovis BCG enables direct pulmonary vaccination and enhances protection against Mycobacterium tuberculosis. Mucosal Immunol. 12, 805–815 (2019).

Article  CAS  PubMed Central  Google Scholar 

Woodworth, J. S. et al. Mucosal boosting of H56:CAF01 immunization promotes lung-localized T cells and an accelerated pulmonary response to Mycobacterium tuberculosis infection without enhancing vaccine protection. Mucosal Immunol. 12, 816–826 (2019).

Article  CAS  Google Scholar 

Van Dis, E. et al. STING-activating adjuvants elicit a Th17 immune response and protect against Mycobacterium tuberculosis infection. Cell Rep. 23, 1435–1447 (2018).

Article  PubMed Central  Google Scholar 

Jeon, B. Y. et al. Mycobacterium bovis BCG immunization induces protective immunity against nine different Mycobacterium tuberculosis strains in mice. Infect. Immun. 76, 5173–5180 (2008).

Article  CAS  PubMed Central  Google Scholar 

Abebe, F. & Bjune, G. The emergence of Beijing family genotypes of Mycobacterium tuberculosis and low-level protection by bacille Calmette-Guerin (BCG) vaccines: is there a link? Clin. Exp. Immunol. 145, 389–397 (2006).

Article  CAS  PubMed Central  Google Scholar 

Gagneux, S. et al. Variable host-pathogen compatibility in Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA 103, 2869–2873 (2006).

Article  ADS  CAS  PubMed Central  Google Scholar 

Koleske, B. N., Jacobs, W. R. Jr. & Bishai, W. R. The Mycobacterium tuberculosis genome at 25 years: lessons and lingering questions. J. Clin. Investig. 133, e173156 (2023).

Article  PubMed Central  Google Scholar 

McShane, H. & Williams, A. A review of preclinical animal models utilised for TB vaccine evaluation in the context of recent human efficacy data. Tuberculosis 94, 105–110 (2014).

Article  Google Scholar 

Henao-Tamayo, M. et al. The efficacy of the BCG vaccine against newly emerging clinical strains of Mycobacterium tuberculosis. PLoS ONE 10, e0136500 (2015).

Article  PubMed Central  Google Scholar 

Kwon, K. W. et al. BCGDeltaBCG1419c increased memory CD8(+) T cell-associated immunogenicity and mitigated pulmonary inflammation compared with BCG in a model of chronic tuberculosis. Sci. Rep. 12, 15824 (2022).

Article  ADS  CAS  PubMed Central  Google Scholar 

Groschel, M. I. et al. Recombinant BCG expressing ESX-1 of Mycobacterium marinum combines low virulence with cytosolic immune signaling and improved TB protection. Cell Rep. 18, 2752–2765 (2017).

Article  CAS  Google Scholar 

Choi, H. G. et al. Antigen-specific IFN-gamma/IL-17-Co-producing CD4(+) T-cells are the determinants for protective efficacy of tuberculosis subunit vaccine. Vaccines 8, 300 (2020).

Article  CAS  PubMed Central  Google Scholar 

Kwon, K. W. et al. Immunogenicity and protective efficacy of RipA, a peptidoglycan hydrolase, against Mycobacterium tuberculosis Beijing outbreak strains. Vaccine (2024). Online ahead of print.

Niu, H. et al. Multi-stage tuberculosis subunit vaccine candidate LT69 provides high protection against Mycobacterium tuberculosis infection in mice. PLoS ONE 10, e0130641 (2015).

Article  PubMed Central  Google Scholar 

Weinrich Olsen, A., van Pinxteren, L. A., Meng Okkels, L., Birk Rasmussen, P. & Andersen, P. Protection of mice with a tuberculosis subunit vaccine based on a fusion protein of antigen 85b and esat-6. Infect. Immun. 69, 2773–2778 (2001).

Article  CAS  Google Scholar 

Nandakumar, S. et al. Boosting BCG-primed responses with a subunit Apa vaccine during the waning phase improves immunity and imparts protection against Mycobacterium tuberculosis. Sci. Rep. 6, 25837 (2016).

Article  ADS  CAS  PubMed Central  Google Scholar 

Sakai, S. et al. Cutting edge: control of Mycobacterium tuberculosis infection by a subset of lung parenchyma-homing CD4 T cells. J. Immunol. 192, 2965–2969 (2014).

Article  CAS  Google Scholar 

Lindenstrom, T. et al. T cells primed by live mycobacteria versus a tuberculosis subunit vaccine exhibit distinct functional properties. EBioMedicine 27, 27–39 (2018).

Article  Google Scholar 

Shanmugasundaram, U. et al. Pulmonary Mycobacterium tuberculosis control associates with CXCR3- and CCR6-expressing antigen-specific Th1 and Th17 cell recruitment. JCI Insight 5, e137858 (2020).

Article  PubMed Central  Google Scholar 

Lin, T. W. et al. Tag-free SARS-CoV-2 receptor binding domain (RBD), but not C-terminal tagged SARS-CoV-2 RBD, induces a rapid and potent neutralizing antibody response. Vaccines 10, 1839 (2022).

Article  CAS  PubMed Central  Google Scholar 

Zhang, Y. Advances in the treatment of tuberculosis. Clin. Pharmacol. Ther. 82, 595–600 (2007).

Article  CAS  Google Scholar 

Lin, P. L. et al. The multistage vaccine H56 boosts the effects of BCG to protect cynomolgus macaques against active tuberculosis and reactivation of latent Mycobacterium tuberculosis infection. J. Clin. Investig. 122, 303–314 (2012).

Article  ADS  CAS  Google Scholar 

留言 (0)

沒有登入
gif