Dobrokhleb, V.G., When society ages, Her. Russ. Acad. Sci., 2021, vol. 91, no. 5, pp. 587–592. https://doi.org/10.1134/S1019331621050026
Article CAS PubMed PubMed Central Google Scholar
Moskalev, A., Chernyagina, E., Kudryavtseva, A., and Shaposhnikov, M., Geroprotectors: A unified concept and screening approaches, Aging Dis., 2017, vol. 8, no. 3, pp. 354–363. PMID: 28580190; PMCID: PMC5440114.https://doi.org/10.14336/AD.2016.1022
Article PubMed PubMed Central Google Scholar
Lagoumtzi, S.M. and Chondrogianni, N., Senolytics and senomorphics: Natural and synthetic therapeutics in the treatment of aging and chronic diseases, Free Radic. Biol. Med., 2021, vol. 171, pp. 169–190. PMID: 33989756.https://doi.org/10.1016/j.freeradbiomed.2021.05.003
Article CAS PubMed Google Scholar
Tchkonia, T., Palmer, A.K., and Kirkland, J.L., New horizons: Novel approaches to enhance healthspan through targeting cellular senescence and related aging mechanisms, J. Clin. Endocrinol. Metab., 2021, vol. 106, no. 3, pp. e1481–e1487. https://doi.org/10.1210/clinem/dgaa728
Kirkland, J., Tchkonia, T., Zhu, Yi, Niedernhofer, L., and Robbins, P., The clinical potential of senolytic drugs, J. Am. Geriatr. Soc., 2017, vol. 65, no. 10, pp. 2297–2301. https://doi.org/10.1111/jgs.14969
Article PubMed PubMed Central Google Scholar
Roger, L., Tomas, F., and Gire, V., Mechanisms and regulation of cellular senescence, Int. J. Mol. Sci., 2021, vol. 22, no. 23, p. 13173. https://doi.org/10.3390/ijms222313173
Article CAS PubMed PubMed Central Google Scholar
Prieto, L.I. and Baker, D.J., Cellular senescence and the immune system in cancer, Gerontology, 2019, vol. 65, no. 5, pp. 505–512. https://doi.org/10.1159/000500683
Article CAS PubMed Google Scholar
Chandra, A. and Rajawat, J., Skeletal aging and osteoporosis: Mechanisms and therapeutics, Int. J. Mol. Sci., 2021, vol. 22, no. 7, p. 3553. https://doi.org/10.3390/ijms22073553
Article CAS PubMed PubMed Central Google Scholar
Almeida, M.I., Silva, A.M., Vasconcelos, D.M., et al., miR-195 in human primary mesenchymal stromal/stem cells regulates proliferation, osteogenesis and paracrine effect on angiogenesis, Oncotarget, 2016, vol. 7, no. 1, pp. 7–22. https://doi.org/10.18632/oncotarget.6589
Kudlova, N., De Sanctis, J.B., and Hajduch, M., Cellular senescence: Molecular targets, biomarkers, and senolytic drugs, Int. J. Mol. Sci., 2022, vol. 23, no. 8, p. 4168. https://doi.org/10.3390/ijms23084168
Article CAS PubMed PubMed Central Google Scholar
Khosla, S., Farr, J.N., Tchkonia, T., and Kirkland, J.L., The role of cellular senescence in ageing and endocrine disease, Nat. Rev. Endocrinol., 2020, vol. 16, no. 5, pp. 263–275. https://doi.org/10.1038/s41574-020-0335-y
Article CAS PubMed Google Scholar
Amaya-Montoya, M., Pérez-Londoño, A., Guatibonza-García, V., Vargas-Villanueva, A., and Mendivil, C.O., Cellular senescence as a therapeutic target for age-related diseases: A review, Adv. Ther., 2020, vol. 37, no. 4, pp. 1407–1424. https://doi.org/10.1007/s12325-020-01287-0
Article PubMed PubMed Central Google Scholar
Meijnikman, A.S., van Olden, C.C., Aydin, O., Herrema, H., Kaminska, D., Lappa, D., et al., Hyperinsulinemia is highly associated with markers of hepatocytic senescence in two independent cohorts, Diabetes, 2022, vol. 71, no. 9, pp. 1929–1936.
Article CAS PubMed PubMed Central Google Scholar
Wang, L., Wang, B., Gasek, N.S., Zhou, Y., Cohn, R.L., Martin, D.E., et al., Targeting p21(Cip1) highly expressing cells in adipose tissue alleviates insulin resistance in obesity, Cell Metabolism, 2022, vol. 34, no. 1, p. 186.
Article CAS PubMed PubMed Central Google Scholar
Palmer, A.K., Tchkonia, T., and Kirkland, J.L., Targeting cellular senescence in metabolic disease, Mol. Metab., 2022, vol. 66, p. 101601. https://doi.org/10.1016/j.molmet.2022.101601
Article CAS PubMed PubMed Central Google Scholar
Elsallabi, O., Patruno, A., Pesce, M., Cataldi, A., Carradori, S., and Gallorini, M., Fisetin as a senotherapeutic agent: Biopharmaceutical properties and crosstalk between cell senescence and neuroprotection, Molecules, 2022, vol. 27, no. 3, p. 738. https://doi.org/10.3390/molecules27030738
Article CAS PubMed PubMed Central Google Scholar
Englund, D.A., Zhang, X., Aversa, Z., and LeBrasseur, N.K., Skeletal muscle aging, cellular senescence, and senotherapeutics: Current knowledge and future directions. Mech. Ageing Dev., 2021, vol. 200, p. 111595. https://doi.org/10.1016/j.mad.2021.111595
Article CAS PubMed PubMed Central Google Scholar
Partridge, L., Fuentealba, M., and Kennedy, B.K., The quest to slow ageing through drug discovery, Nat. Rev. Drug Discov., 2020, vol. 19, no. 8, pp. 513–532. https://doi.org/10.1038/s41573-020-0067-7
Article CAS PubMed Google Scholar
Zhavoronkov, A., Geroprotective and senoremediative strategies to reduce the comorbidity, infection rates, severity, and lethality in gerophilic and gerolavic infections, Aging, 2020, vol. 12, no. 8, pp. 6492–6510. https://doi.org/10.18632/aging.102988
Article CAS PubMed PubMed Central Google Scholar
Zhang, L., Pitcher, L.E., Prahalad, V., Niedernhofer, L.J., and Robbins, P.D., Targeting cellular senescence with senotherapeutics: Senolytics and senomorphics [published online ahead of print, 2022 Jan 11], FEBS J., 2022, vol. 290, no. 5, pp. 1362–1383. https://doi.org/10.1111/febs.16350
Article CAS PubMed Google Scholar
Niedernhofer, L. and Robbins, P., Senotherapeutics for healthy ageing, Nat. Rev. Drug Discov., 2018, p. 377. https://doi.org/10.1038/nrd.2018.44
Carreno, G., Guiho, R., and Martinez-Barbera, J.P., Cell senescence in neuropathology: A focus on neurodegeneration and tumours, Neuropathol. Appl. Neurobiol., 2021, vol. 47, no. 3, pp. 359–378. https://doi.org/10.1111/nan.12689
Article PubMed PubMed Central Google Scholar
Zhu, Y., Tchkonia, T., Pirtskhalava, T., et al., The Achilles’ heel of senescent cells: From transcriptome to senolytic drugs, Aging Cell, 2015, vol. 14, no. 4, pp. 644–658. https://doi.org/10.1111/acel.12344
Article CAS PubMed PubMed Central Google Scholar
Justice, J.N. et al., Senolytics in idiopathic pulmonary fibrosis: Results from a first-in-human, open-label, pilot study, EBioMedicine, 2019, vol. 40, pp. 554–563.
Article PubMed PubMed Central Google Scholar
Shao, Z., Wang, B., Shi, Y., et al., Senolytic agent Quercetin ameliorates intervertebral disc degeneration via the Nrf2/NF-κB axis, Osteoarthritis Cartilage, 2021, vol. 29, no. 3, pp. 413–422. https://doi.org/10.1016/j.joca.2020.11.006
Article CAS PubMed Google Scholar
Song, S., Tchkonia, T., Jiang, J., Kirkland, J.L., and Sun, Y., Targeting senescent cells for a healthier aging: Challenges and opportunities, Adv. Sci. (Weinh.), 2020, vol. 7, no. 23, p. 2002611. PMID: 33304768; PMCID: PMC7709980.https://doi.org/10.1002/advs.202002611
Article CAS PubMed Google Scholar
Kovacovicova, K., Skolnaja, M., Heinmaa, M., et al., Senolytic cocktail Dasatinib + Quercetin (D + Q) does not enhance the efficacy of senescence-inducing chemotherapy in liver cancer, Front. Oncol., 2018, vol. 8, p. 459. https://doi.org/10.3389/fonc.2018.00459
Article PubMed PubMed Central Google Scholar
Chang, J., Wang, Y., Shao, L., et al., Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice, Nat. Med., 2016, vol. 22, no. 1, pp. 78–83. https://doi.org/10.1038/nm.4010
Article CAS PubMed Google Scholar
Zhu, Y., Tchkonia, T., Fuhrmann-Stroissnigg, H., et al., Identification of a novel senolytic agent, navitoclax, targeting the Bcl-2 family of antiapoptotic factors, Aging Cell, 2016, vol. 15, no. 3, pp. 428–435. https://doi.org/10.1111/acel.12445
Article CAS PubMed PubMed Central Google Scholar
Harrison, C.N., Garcia, J.S., Somervaille, T.C.P., Foran, J.M., Verstovsek, S., Jamieson, C., Mesa, R., Ritchie, E.K., Tantravahi, S.K., Vachhani, P., O’Connell, C.L., Komrokji, R.S., Harb, J., Hutti, J.E., Holes, L., Masud, A.A., Nuthalapati, S., Potluri, J., and Pemmaraju, N., Addition of Navitoclax to ongoing Ruxolitinib therapy for patients with myelofibrosis with progression or suboptimal response: Phase II safety and efficacy, J. Clin. Oncol., 2022, vol. 40, no. 15, pp. 1671–1680. PMID: 35180010; PMCID: PMC9113204.https://doi.org/10.1200/JCO.21.02188
Article CAS PubMed PubMed Central Google Scholar
Tse, C., Shoemaker, A.R., Adickes, J., Anderson, M.G., Chen, J., and Jin, S., ABT-263: A potent and orally bioavailable Bcl-2 family inhibitor, Cancer Res., 2008, vol. 68, no. 9, pp. 3421–3428.
Article CAS PubMed Google Scholar
Schoenwaelder S.M., Jarman K.E., Gardiner. E.E., et al. Bcl-xL-inhibitory BH3 mimetics can induce a transient thrombocytopathy that undermines the hemostatic function of platelets, Blood, 2011, vol. 118, no. 6, pp. 1663–1674. https://doi.org/10.1182/blood-2011-04-347849
Article CAS PubMed Google Scholar
National Center for Biotechnology Information, PubChem Compound Summary for CID 24978538, Navitoclax. https://pubchem.ncbi.nlm.nih.gov/compound/Navitoclax. Cited May 23, 2023.
留言 (0)