Senolytic Drugs: Implications for Clinical Practice

Dobrokhleb, V.G., When society ages, Her. Russ. Acad. Sci., 2021, vol. 91, no. 5, pp. 587–592. https://doi.org/10.1134/S1019331621050026

Article  CAS  PubMed  PubMed Central  Google Scholar 

Moskalev, A., Chernyagina, E., Kudryavtseva, A., and Shaposhnikov, M., Geroprotectors: A unified concept and screening approaches, Aging Dis., 2017, vol. 8, no. 3, pp. 354–363. PMID: 28580190; PMCID: PMC5440114.https://doi.org/10.14336/AD.2016.1022

Article  PubMed  PubMed Central  Google Scholar 

Lagoumtzi, S.M. and Chondrogianni, N., Senolytics and senomorphics: Natural and synthetic therapeutics in the treatment of aging and chronic diseases, Free Radic. Biol. Med., 2021, vol. 171, pp. 169–190. PMID: 33989756.https://doi.org/10.1016/j.freeradbiomed.2021.05.003

Article  CAS  PubMed  Google Scholar 

Tchkonia, T., Palmer, A.K., and Kirkland, J.L., New horizons: Novel approaches to enhance healthspan through targeting cellular senescence and related aging mechanisms, J. Clin. Endocrinol. Metab., 2021, vol. 106, no. 3, pp. e1481–e1487. https://doi.org/10.1210/clinem/dgaa728

Article  PubMed  Google Scholar 

Kirkland, J., Tchkonia, T., Zhu, Yi, Niedernhofer, L., and Robbins, P., The clinical potential of senolytic drugs, J. Am. Geriatr. Soc., 2017, vol. 65, no. 10, pp. 2297–2301. https://doi.org/10.1111/jgs.14969

Article  PubMed  PubMed Central  Google Scholar 

Roger, L., Tomas, F., and Gire, V., Mechanisms and regulation of cellular senescence, Int. J. Mol. Sci., 2021, vol. 22, no. 23, p. 13173. https://doi.org/10.3390/ijms222313173

Article  CAS  PubMed  PubMed Central  Google Scholar 

Prieto, L.I. and Baker, D.J., Cellular senescence and the immune system in cancer, Gerontology, 2019, vol. 65, no. 5, pp. 505–512. https://doi.org/10.1159/000500683

Article  CAS  PubMed  Google Scholar 

Chandra, A. and Rajawat, J., Skeletal aging and osteoporosis: Mechanisms and therapeutics, Int. J. Mol. Sci., 2021, vol. 22, no. 7, p. 3553. https://doi.org/10.3390/ijms22073553

Article  CAS  PubMed  PubMed Central  Google Scholar 

Almeida, M.I., Silva, A.M., Vasconcelos, D.M., et al., miR-195 in human primary mesenchymal stromal/stem cells regulates proliferation, osteogenesis and paracrine effect on angiogenesis, Oncotarget, 2016, vol. 7, no. 1, pp. 7–22. https://doi.org/10.18632/oncotarget.6589

Article  PubMed  Google Scholar 

Kudlova, N., De Sanctis, J.B., and Hajduch, M., Cellular senescence: Molecular targets, biomarkers, and senolytic drugs, Int. J. Mol. Sci., 2022, vol. 23, no. 8, p. 4168. https://doi.org/10.3390/ijms23084168

Article  CAS  PubMed  PubMed Central  Google Scholar 

Khosla, S., Farr, J.N., Tchkonia, T., and Kirkland, J.L., The role of cellular senescence in ageing and endocrine disease, Nat. Rev. Endocrinol., 2020, vol. 16, no. 5, pp. 263–275. https://doi.org/10.1038/s41574-020-0335-y

Article  CAS  PubMed  Google Scholar 

Amaya-Montoya, M., Pérez-Londoño, A., Guatibonza-García, V., Vargas-Villanueva, A., and Mendivil, C.O., Cellular senescence as a therapeutic target for age-related diseases: A review, Adv. Ther., 2020, vol. 37, no. 4, pp. 1407–1424. https://doi.org/10.1007/s12325-020-01287-0

Article  PubMed  PubMed Central  Google Scholar 

Meijnikman, A.S., van Olden, C.C., Aydin, O., Herrema, H., Kaminska, D., Lappa, D., et al., Hyperinsulinemia is highly associated with markers of hepatocytic senescence in two independent cohorts, Diabetes, 2022, vol. 71, no. 9, pp. 1929–1936.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, L., Wang, B., Gasek, N.S., Zhou, Y., Cohn, R.L., Martin, D.E., et al., Targeting p21(Cip1) highly expressing cells in adipose tissue alleviates insulin resistance in obesity, Cell Metabolism, 2022, vol. 34, no. 1, p. 186.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Palmer, A.K., Tchkonia, T., and Kirkland, J.L., Targeting cellular senescence in metabolic disease, Mol. Metab., 2022, vol. 66, p. 101601. https://doi.org/10.1016/j.molmet.2022.101601

Article  CAS  PubMed  PubMed Central  Google Scholar 

Elsallabi, O., Patruno, A., Pesce, M., Cataldi, A., Carradori, S., and Gallorini, M., Fisetin as a senotherapeutic agent: Biopharmaceutical properties and crosstalk between cell senescence and neuroprotection, Molecules, 2022, vol. 27, no. 3, p. 738. https://doi.org/10.3390/molecules27030738

Article  CAS  PubMed  PubMed Central  Google Scholar 

Englund, D.A., Zhang, X., Aversa, Z., and LeBrasseur, N.K., Skeletal muscle aging, cellular senescence, and senotherapeutics: Current knowledge and future directions. Mech. Ageing Dev., 2021, vol. 200, p. 111595. https://doi.org/10.1016/j.mad.2021.111595

Article  CAS  PubMed  PubMed Central  Google Scholar 

Partridge, L., Fuentealba, M., and Kennedy, B.K., The quest to slow ageing through drug discovery, Nat. Rev. Drug Discov., 2020, vol. 19, no. 8, pp. 513–532. https://doi.org/10.1038/s41573-020-0067-7

Article  CAS  PubMed  Google Scholar 

Zhavoronkov, A., Geroprotective and senoremediative strategies to reduce the comorbidity, infection rates, severity, and lethality in gerophilic and gerolavic infections, Aging, 2020, vol. 12, no. 8, pp. 6492–6510. https://doi.org/10.18632/aging.102988

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang, L., Pitcher, L.E., Prahalad, V., Niedernhofer, L.J., and Robbins, P.D., Targeting cellular senescence with senotherapeutics: Senolytics and senomorphics [published online ahead of print, 2022 Jan 11], FEBS J., 2022, vol. 290, no. 5, pp. 1362–1383. https://doi.org/10.1111/febs.16350

Article  CAS  PubMed  Google Scholar 

Niedernhofer, L. and Robbins, P., Senotherapeutics for healthy ageing, Nat. Rev. Drug Discov., 2018, p. 377. https://doi.org/10.1038/nrd.2018.44

Carreno, G., Guiho, R., and Martinez-Barbera, J.P., Cell senescence in neuropathology: A focus on neurodegeneration and tumours, Neuropathol. Appl. Neurobiol., 2021, vol. 47, no. 3, pp. 359–378. https://doi.org/10.1111/nan.12689

Article  PubMed  PubMed Central  Google Scholar 

Zhu, Y., Tchkonia, T., Pirtskhalava, T., et al., The Achilles’ heel of senescent cells: From transcriptome to senolytic drugs, Aging Cell, 2015, vol. 14, no. 4, pp. 644–658. https://doi.org/10.1111/acel.12344

Article  CAS  PubMed  PubMed Central  Google Scholar 

Justice, J.N. et al., Senolytics in idiopathic pulmonary fibrosis: Results from a first-in-human, open-label, pilot study, EBioMedicine, 2019, vol. 40, pp. 554–563.

Article  PubMed  PubMed Central  Google Scholar 

Shao, Z., Wang, B., Shi, Y., et al., Senolytic agent Quercetin ameliorates intervertebral disc degeneration via the Nrf2/NF-κB axis, Osteoarthritis Cartilage, 2021, vol. 29, no. 3, pp. 413–422. https://doi.org/10.1016/j.joca.2020.11.006

Article  CAS  PubMed  Google Scholar 

Song, S., Tchkonia, T., Jiang, J., Kirkland, J.L., and Sun, Y., Targeting senescent cells for a healthier aging: Challenges and opportunities, Adv. Sci. (Weinh.), 2020, vol. 7, no. 23, p. 2002611. PMID: 33304768; PMCID: PMC7709980.https://doi.org/10.1002/advs.202002611

Article  CAS  PubMed  Google Scholar 

Kovacovicova, K., Skolnaja, M., Heinmaa, M., et al., Senolytic cocktail Dasatinib + Quercetin (D + Q) does not enhance the efficacy of senescence-inducing chemotherapy in liver cancer, Front. Oncol., 2018, vol. 8, p. 459. https://doi.org/10.3389/fonc.2018.00459

Article  PubMed  PubMed Central  Google Scholar 

Chang, J., Wang, Y., Shao, L., et al., Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice, Nat. Med., 2016, vol. 22, no. 1, pp. 78–83. https://doi.org/10.1038/nm.4010

Article  CAS  PubMed  Google Scholar 

Zhu, Y., Tchkonia, T., Fuhrmann-Stroissnigg, H., et al., Identification of a novel senolytic agent, navitoclax, targeting the Bcl-2 family of antiapoptotic factors, Aging Cell, 2016, vol. 15, no. 3, pp. 428–435. https://doi.org/10.1111/acel.12445

Article  CAS  PubMed  PubMed Central  Google Scholar 

Harrison, C.N., Garcia, J.S., Somervaille, T.C.P., Foran, J.M., Verstovsek, S., Jamieson, C., Mesa, R., Ritchie, E.K., Tantravahi, S.K., Vachhani, P., O’Connell, C.L., Komrokji, R.S., Harb, J., Hutti, J.E., Holes, L., Masud, A.A., Nuthalapati, S., Potluri, J., and Pemmaraju, N., Addition of Navitoclax to ongoing Ruxolitinib therapy for patients with myelofibrosis with progression or suboptimal response: Phase II safety and efficacy, J. Clin. Oncol., 2022, vol. 40, no. 15, pp. 1671–1680. PMID: 35180010; PMCID: PMC9113204.https://doi.org/10.1200/JCO.21.02188

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tse, C., Shoemaker, A.R., Adickes, J., Anderson, M.G., Chen, J., and Jin, S., ABT-263: A potent and orally bioavailable Bcl-2 family inhibitor, Cancer Res., 2008, vol. 68, no. 9, pp. 3421–3428.

Article  CAS  PubMed  Google Scholar 

Schoenwaelder S.M., Jarman K.E., Gardiner. E.E., et al. Bcl-xL-inhibitory BH3 mimetics can induce a transient thrombocytopathy that undermines the hemostatic function of platelets, Blood, 2011, vol. 118, no. 6, pp. 1663–1674. https://doi.org/10.1182/blood-2011-04-347849

Article  CAS  PubMed  Google Scholar 

National Center for Biotechnology Information, PubChem Compound Summary for CID 24978538, Navitoclax. https://pubchem.ncbi.nlm.nih.gov/compound/Navitoclax. Cited May 23, 2023.

留言 (0)

沒有登入
gif