Brain Aging

United Nations, Department of Economic and Social Affairs, Population Division (2019). World Population Ageing 2019: Highlights (ST/ESA/SER.A/430).

Blinkouskaya, Y., Caçoilo, A., Gollamudi, T., Jalalian, S., and Weickenmeier, J., Brain aging mechanisms with mechanical manifestations, Mech. Ageing Dev., 2021, vol. 200, p. 111575.https://doi.org/10.1016/j.mad.2021.111575

Harada, C.N., Natelson Love, M.C., and Triebel, K.L., Normal cognitive aging, Clin. Geriatr. Med., 2013, vol. 29, no. 4, pp. 737–752.https://doi.org/10.1016/j.cger.2013.07.002

Salthouse, T.A., Trajectories of normal cognitive aging, Psychol. Aging, 2019, vol. 34, no. 1, pp. 17–24. https://doi.org/10.1037/pag0000288

Article  PubMed  Google Scholar 

MacDonald M.E. and Pike, G.B., MRI of healthy brain aging: A review, NMR Biomed., 2021, vol. 34, no. 9, p. e4564. https://doi.org/10.1002/nbm.4564

Article  PubMed  Google Scholar 

Bethlehem, R.A.I., Seidlitz, J., White, S.R., et al., Brain charts for the human lifespan, Nature, 2022, vol. 604, no. 7906, pp. 525–533. https://doi.org/10.1038/s41586-022-04554-y

Article  CAS  PubMed  Google Scholar 

von Bartheld, C.S., Myths and truths about the cellular composition of the human brain: A review of influential concepts, J. Chem. Neuroanat., 2018, vol. 93, pp. 2–15. https://doi.org/10.1016/j.jchemneu.2017.08.004

Article  CAS  PubMed  Google Scholar 

Fjell, A.M. and Walhovd, K.B., Structural brain changes in aging: Courses, causes and cognitive consequences, Rev. Neurosci., 2010, vol. 21, no. 3, pp. 187–221. https://doi.org/10.1515/revneuro.2010.21.3.187

Article  PubMed  Google Scholar 

Dickstein, D.L., Weaver, C.M., Luebke, J.I., and Hof, P.R., Dendritic spine changes associated with normal aging, Neuroscience, 2013, vol. 251, pp. 21–32.https://doi.org/10.1016/j.neuroscience.2012.09.077

Article  CAS  PubMed  Google Scholar 

Clarke, L.E., Liddelow, S.A., Chakraborty, C., Münch, A.E., Heiman, M., and Barres, B.A., Normal aging induces A1-like astrocyte reactivity, Proc. Natl. Acad. Sci. U.S.A., 2018, vol. 115, no. 8, pp. E1896–E1905. https://doi.org/10.1073/pnas.1800165115

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Harrison, I.F., Ismail, O., Machhada, A., Colgan, N., Ohene, Y., Nahavandi, P., Ahmed, Z., Fisher, A., Meftah, S., Murray, T.K., Ottersen, O.P., Nagelhus, E.A., O’Neill, M.J., Wells, J.A., and Lythgoe, M.F., Impaired glymphatic function and clearance of tau in an Alzheimer’s disease model, Brain, 2020, vol. 143, no. 8, pp. 2576–2593. https://doi.org/10.1093/brain/awaa179

Article  PubMed  PubMed Central  Google Scholar 

Knopman, D.S., Lundt, E.S., Therneau, T.M., Albertson, S.M., Gunter, J.L., Senjem, M.L., Schwarz, C.G., Mielke, M.M., Machulda, M.M., Boeve, B.F., Jones, D.T., Graff-Radford, J., Vemuri, P., Kantarci, K., Lowe, V.J., Petersen, R.C., and Jack, C.R., Jr., Alzheimer’s disease neuroimaging initiative. Association of initial β-amyloid levels with subsequent flortaucipir positron emission tomography changes in persons without cognitive impairment, JAMA Neurol., 2021, vol. 78, no. 2, pp. 217–228. https://doi.org/10.1001/jamaneurol.2020.3921

Article  PubMed  Google Scholar 

Allen, J.S., Bruss, J., Brown, C.K., and Damasio, H., Normal neuroanatomical variation due to age: The major lobes and a parcellation of the temporal region, Neurobiol. Aging, 2005, vol. 26, no. 9, pp. 1245–1260; discussion 1279–1282. https://doi.org/10.1016/j.neurobiolaging.2005.05.023

Article  PubMed  Google Scholar 

Schilling, K.G., Archer, D., Yeh, F.C., Rheault, F., Cai, L.Y., Hansen, C., Yang, Q., Ramdass, K., Shafer, A.T., Resnick, S.M., Pechman, K.R., Gifford, K.A., Hohman, T.J., Jefferson, A., Anderson, A.W., Kang, H., and Landman, B.A., Aging and white matter microstructure and macrostructure: A longitudinal multi-site diffusion MRI study of 1218 participants, Brain Struct. Funct., 2022, vol. 227, no. 6, pp. 2111–2125. https://doi.org/10.1007/s00429-022-02503-z

Article  PubMed  PubMed Central  Google Scholar 

Salat, D.H., Greve, D.N., Pacheco, J.L., Quinn, B.T., Helmer, K.G., Buckner, R.L., and Fischl, B., Regional white matter volume differences in nondemented aging and Alzheimer’s disease, Neuroimage, 2009, vol. 44, no. 4, pp. 1247–1258. https://doi.org/10.1016/j.neuroimage.2008.10.030

Article  PubMed  Google Scholar 

Wardlaw, J.M., Valdés Hernández, M.C., and Muñoz-Maniega, S., What are white matter hyperintensities made of? Relevance to vascular cognitive impairment, J. Am. Heart Assoc., 2015, vol. 4, no. 6, p. 001140. https://doi.org/10.1161/JAHA.114.001140

Article  PubMed  Google Scholar 

Pantoni, L., Fierini, F., and Poggesi, A., LADIS Study Group, Impact of cerebral white matter changes on functionality in older adults: An overview of the LADIS Study results and future directions, Geriatr. Gerontol. Int., 2015, vol. 15, suppl. 1, pp. 10–16. https://doi.org/10.1111/ggi.12665

Article  PubMed  Google Scholar 

Linortner, P., McDaniel, C., Shahid, M., Levine, T.F., Tian, L., Cholerton, B., and Poston, K.L., White matter hyperintensities related to Parkinson’s disease executive function, Mov. Disord. Clin. Pract., 2020, vol. 7, no. 6, pp. 629–638. https://doi.org/10.1002/mdc3.12956

Article  PubMed  PubMed Central  Google Scholar 

Gogoleva, A.G. and Zakharov, V.V., The etiology, manifestations, and therapy of chronic cerebrovascular diseases, in Nevrologiya, neiropsikhiatriya, psikhosomatika, 2020, vol. 12, no. 5, pp. 84–91. https://doi.org/10.14412/2074-2711-2020-5-84-91

Garnier-Crussard, A., Bougacha, S., Wirth, M., André, C., Delarue, M., Landeau, B., Mézenge, F., Kuhn, E., Gonneaud, J., Chocat, A., Quillard, A., Ferrand-Devouge, E., de La Sayette, V., Vivien, D., Krolak-Salmon, P., and Chételat, G., White matter hyperintensities across the adult lifespan: Relation to age, Aβ load, and cognition, Alzheimers Res. Ther., 2020, vol. 12, no. 1, p. 127. https://doi.org/10.1186/s13195-020-00669-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ogama, N., Sakurai, T., Nakai, T., Niida, S., Saji, N., Toba, K., Umegaki, H., and Kuzuya, M., Impact of frontal white matter hyperintensity on instrumental activities of daily living in elderly women with Alzheimer disease and amnestic mild cognitive impairment, PLoS One, 2017, vol. 12, no. 3, p. e0172484. https://doi.org/10.1371/journal.pone.0172484

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rizvi, B., Lao, P.J., Chesebro, A.G., Dworkin, J.D., Amarante, E., Beato, J.M., Gutierrez, J., Zahodne, L.B., Schupf, N., Manly, J.J., Mayeux, R., and Brickman, A.M., Association of regional white matter hyperintensities with longitudinal Alzheimer-like pattern of neurodegeneration in older adults, JAMA Network Open, 2021, vol. 4, no. 10, p. e2125166. https://doi.org/10.1001/jamanetworkopen.2021.25166

Article  PubMed  PubMed Central  Google Scholar 

Al-Hazzouri, Z.A. and Yaffe, K., Arterial stiffness and cognitive function in the elderly, J. Alzheimers Dis., 2014, vol. 42, suppl. 4, no. 4, p. S503–S514. https://doi.org/10.3233/JAD-141563

Drapkina, O.M. and Fadeeva, M.V., Arterial aging as a cardiovascular risk factor, Arterial’naya gipertenziya, 2014, vol. 20, no. 4, pp. 224–231. https://doi.org/10.18705/1607-419X-2014-20-4-224-231

Liu, Q., Fang, J., Cui, C., Dong, S., Gao, L., Bao, J., Li, Y., Ma, M., Chen, N., and He, L., Association of aortic stiffness and cognitive decline: A systematic review and meta-analysis, Front. Aging Neurosci., 2021, vol. 13, p. 680205. https://doi.org/10.3389/fnagi.2021.680205

Article  PubMed  PubMed Central  Google Scholar 

Martinez-Ramirez, S., Greenberg, S.M., and Viswanathan, A., Cerebral microbleeds: Overview and implications in cognitive impairment, Alzheimers Res. Ther., 2014, vol. 6, no. 3, p. 33. https://doi.org/10.1186/alzrt263

Article  PubMed  PubMed Central  Google Scholar 

Tsubota-Utsugi, M., Satoh, M., Tomita, N., Hara, A., Kondo, T., Hosaka, M., Saito, S., Asayama, K., Inoue, R., Hirano, M., Hosokawa, A., Murakami, K., Murakami, T., Metoki, H., Kikuya, M., Izumi, S.I., Imai, Y., and Ohkubo, T., Lacunar infarcts rather than white matter hyperintensity as a predictor of future higher level functional decline: The Ohasama study, J. Stroke Cerebrovasc. Dis., 2017, vol. 26, no. 2, pp. 376–384. https://doi.org/10.1016/j.jstrokecerebrovasdis.2016.09.036

Wrigglesworth, J., Ward, P., Harding, I.H., Nilaweera, D., Wu, Z., Woods, R.L., and Ryan, J., Factors associated with brain ageing—a systematic review, BMC Neurol., 2021, vol. 21, no. 1, p. 312. https://doi.org/10.1186/s12883-021-02331-4

Article  PubMed  PubMed Central  Google Scholar 

Bogolepova, A.N., Vasenina, E.E., Gomzyakova, N.A., et al., Clinical guidelines for cognitive disorders in elderly and older patients, Zh. Nevr. Psikhiatr. im. S.S. Korsakova, 2021, vol. 121, nos. 10-3, pp. 6–137.

Azam, S., Haque, M.E., Balakrishnan, R., Kim, I.S., and Choi, D.K., The ageing brain: Molecular and cellular basis of neurodegeneration, Front. Cell Dev. Biol., 2021, vol. 9, p. 683459. https://doi.org/10.3389/fcell.2021.683459

Article  PubMed  PubMed Central  Google Scholar 

de Godoy, L.L., Alves, C.A.P.F., Saavedra, J.S.M., Studart-Neto, A., Nitrini, R., da Costa Leite, C., and Bisdas, S., Understanding brain resilience in superagers: A systematic review, Neuroradiology, 2021, vol. 63, no. 5, pp. 663–683. https://doi.org/10.1007/s00234-020-02562-1

Article  PubMed  Google Scholar 

留言 (0)

沒有登入
gif