Relationships between Cxcl12, Tweak, Notch1, and Yap mRNA Expression Levels in Molecular Mechanisms of Liver Fibrogenesis

Zhang D., Zhang Y., Sun B. 2022. The molecular mechanisms of liver fibrosis and its potential therapy in application. Int. J. Mol. Sci. 23 (20), 12572. https://doi.org/10.3390/ijms232012572

Article  CAS  Google Scholar 

Graupera I., Isus L., Coll M., Pose E., Díaz A., Vallverdú J., Rubio-Tomás T., Martínez-Sánchez C., Huelin P., Llopis M., Solé C., Fondevila C., Lozano J.J., Sancho-Bru P., Ginès P., Aloy P. 2022. Molecular characterization of chronic liver disease dynamics: from liver fibrosis to acute-on-chronic liver failure. JHEP Rep. 4 (6), 100482. https://doi.org/10.1016/j.jhepr.2022.100482

Article  Google Scholar 

Kachanova O., Lobov A., Malashicheva A. 2022. The role of the Notch signaling pathway in recovery of cardiac function after myocardial infarction. Int. J. Mol. Sci. 23 (20), 12509. https://doi.org/10.3390/ijms232012509

Article  CAS  Google Scholar 

Yuan C., Ni L., Zhang C., Wu X. 2020. The role of Notch3 signaling in kidney disease. Oxid. Med. Cell Longev. 2020, 1809408. https://doi.org/10.1155/2020/1809408

Salazar J.L., Yang S.A., Yamamoto S. 2020. Post-developmental roles of notch signaling in the nervous system. Biomolecules. 10 (7), 985. https://doi.org/10.3390/biom10070985

Article  CAS  Google Scholar 

Hosseini-Alghaderi S., Baron M. 2020. Notch3 in development, health and disease. Biomolecules. 10(3), 485. https://doi.org/10.3390/biom10030485

Article  CAS  Google Scholar 

Chen Y., Gao W.K., Shu Y.Y., Ye J. 2022. Mechanisms of ductular reaction in non-alcoholic steatohepatitis. World J. Gastroenterol. 28 (19), 2088‒2099. https://doi.org/10.3748/wjg.v28.i19.2088

Article  CAS  Google Scholar 

Vera L., Garcia-Olloqui P., Petri E., Viñado A.C., Valera P.S., Blasco-Iturri Z., Calvo I.A., Cenzano I., Ruppert C., Zulueta J.J., Prosper F., Saez B., Pardo-Saganta A. 2021. Notch3 deficiency attenuates pulmonary fibrosis and impedes lung-function decline. Am. J. Respir. Cell Mol. Biol. 64 (4), 465‒476. https://doi.org/10.1165/rcmb.2020-0516OC

Article  CAS  Google Scholar 

Adams J.M., Jafar-Nejad H. 2019. The roles of notch signaling in liver development and disease. Biomolecules. 9 (10), 608. https://doi.org/10.3390/biom9100608

Article  CAS  Google Scholar 

Pelullo M., Zema S., Nardozza F., Checquolo S., Screpanti I., Bellavia D. 2019. Wnt, Notch, and TGF-β pathways impinge on hedgehog signaling complexity: an open window on cancer. Front. Genet. 10, 711. https://doi.org/10.3389/fgene.2019.00711

Article  CAS  Google Scholar 

Dai Y., Hao P., Sun Z., Guo Z., Xu H., Xue L., Song H., Li Y., Li S., Gao M., Si T., Zhang Y., Qi Y. 2021. Liver knockout YAP gene improved insulin resistance-induced hepatic fibrosis. J. Endocrinol. 249 (2), 149‒161. https://doi.org/10.1530/JOE-20-0561

Article  CAS  Google Scholar 

Yu H.X., Yao Y., Bu F.T., Chen Y., Wu Y.T., Yang Y., Chen X., Zhu Y., Wang Q., Pan X.Y., Meng X.M., Huang C., Li J. 2019. Blockade of YAP alleviates hepatic fibrosis through accelerating apoptosis and reversion of activated hepatic stellate cells. Mol. Immunol. 107, 29‒40. https://doi.org/10.1016/j.molimm.2019.01.004

Article  CAS  Google Scholar 

Zheng C., Luo J., Yang Y., Dong R., Yu F.X., Zheng S. 2021. YAP activation and implications in patients and a mouse model of biliary atresia. Front. Pediatr. 8, 618226. https://doi.org/10.3389/fped.2020.618226

Article  Google Scholar 

He X., Tolosa M.F., Zhang T., Goru S.K., Ulloa Severino L., Misra P.S., McEvoy C.M., Caldwell L., Szeto S.G., Gao F., Chen X., Atin C., Ki V., Vukosa N., Hu C., Zhang J., Yip C., Krizova A., Wrana J.L., Yuen D.A. 2022. Myofibroblast YAP/TAZ activation is a key step in organ fibrogenesis. JCI Insight. 7 (4), e146243. https://doi.org/10.1172/jci.insight.146243

Article  Google Scholar 

Wang M., Xie Z., Xu J., Feng Z. 2020. TWEAK/Fn14 axis in respiratory diseases. Clin. Chim. Acta. 509, 139‒148. https://doi.org/10.1016/j.cca.2020.06.007

Article  CAS  Google Scholar 

Dwyer B.J., Jarman E.J., Gogoi-Tiwari J., Ferreira-Gonzalez S., Boulter L., Guest R.V., Kendall T.J., Kurian D., Kilpatrick A.M., Robson A.J., O’Duibhir E., Man T.Y., Campana L., Starkey Lewis P.J., Wigmore S.J., Olynyk J.K., Ramm G.A., Tirnitz-Parker J.E.E., Forbes S.J. 2021. TWEAK/Fn14 signalling promotes cholangiocarcinoma niche formation and progression. J. Hepatol. 74 (4), 860‒872. https://doi.org/10.1016/j.jhep.2020.11.018

Article  CAS  Google Scholar 

Zhang Y., Zeng W., Xia Y. 2021. TWEAK/Fn14 axis is an important player in fibrosis. J. Cell. Physiol. 236 (5), 3304‒3316. https://doi.org/10.1002/jcp.30089

Article  CAS  Google Scholar 

Lin Y., Dong M.Q., Liu Z.M., Xu M., Huang Z.H., Liu H.J., Gao Y., Zhou W. 2022. A strategy of vascular-targeted therapy for liver fibrosis. J. Hepatology. 76 (3), 660‒675. https://doi.org/10.1002/hep.32299

Article  CAS  Google Scholar 

Lefere S., Devisscher L., Geerts A. 2020. Angiogenesis in the progression of non-alcoholic fatty liver disease. Acta Gastroenterol. Belg. 83 (2), 301‒307.

CAS  Google Scholar 

Yang L., Yue W., Zhang H., Zhang Z., Xue R., Dong C., Liu F., Chang N., Yang L., Li L. 2022. Dual targeting of angipoietin-1 and von Willebrand factor by microRNA-671-5p attenuates liver angiogenesis and fibrosis. Hepatol. Commun. 6 (6), 1425‒1442. https://doi.org/10.1002/hep4.1888

Article  CAS  Google Scholar 

Friedman S.L., Pinzani M. 2022. Hepatic fibrosis 2022: unmet needs and a blueprint for the future. Hepatology. 75(2), 473‒488. https://doi.org/10.1002/hep.32285

Article  CAS  Google Scholar 

Ray P., Stacer A.C., Fenner J., Cavnar S.P., Meguiar K., Brown M., Luker K.E., Luker G.D. 2015. CXCL12-γ in primary tumors drives breast cancer metastasis. Oncogene. 34 (16), 2043‒2051. https://doi.org/10.1038/onc.2014.157

Article  CAS  Google Scholar 

Cui L.N., Zheng X.H., Yu J.H., Han Y. 2021. Role of CXCL12-CXCR4/CXCR7 signal axis in liver regeneration and liver fibrosis. Zhonghua Gan Zang Bing Za Zhi. 29 (9), 900‒903. https://doi.org/10.3760/cma.j.cn501113-20200721-00403

Article  CAS  Google Scholar 

Chiraunyanann T., Changsri K., Sretapunya W., Yuenyongchaiwat K., Akekawatchai C. 2019. CXCL12 G801A polymorphism is associated with significant liver fibrosis in HIV-infected Thais: a cross-sectional study. Asian Pac. J. Allergy Immunol. 37 (3), 162‒170. https://doi.org/10.12932/AP-160917-0162

Article  CAS  Google Scholar 

Zhang J., Li Y., Liu Q., Li R., Pu S., Yang L., Feng Y., Ma L. 2018. SKLB023 as an iNOS inhibitor alleviated liver fibrosis by inhibiting the TGF-beta/Smad signaling pathway. RSC Adv. 8 (54), 30919‒30924. https://doi.org/10.1039/c8ra04955f

Article  CAS  Google Scholar 

Ahmad N., Ansari M.Y., Haqqi T.M. 2020. Role of iNOS in osteoarthritis: pathological and therapeutic aspects. J. Cell Physiol. 235 (10), 6366‒6376. https://doi.org/10.1002/jcp.29607

Article  CAS  Google Scholar 

Kashfi K., Kannikal J., Nath N. 2021. Macrophage reprogramming and cancer therapeutics: role of iNOS-derived NO. Cells. 10 (11), 3194. https://doi.org/10.3390/cells10113194

Article  CAS  Google Scholar 

Tsomidis I., Notas G., Xidakis C., Voumvouraki A., Samonakis D.N., Koulentaki M., Kouroumalis E. 2022. Enzymes of fibrosis in chronic liver disease. Biomedicines. 10 (12), 3179. https://doi.org/10.3390/biomedicines10123179

Article  CAS  Google Scholar 

Lachowski D., Cortes E., Rice A., Pinato D., Rombouts K., Hernandez A.D.R. 2019. Matrix stiffness modulates the activity of MMP-9 and TIMP-1 in hepatic stellate cells to perpetuate fibrosis. Sci. Rep. 9 (1), 7299. https://doi.org/10.1038/s41598-019-43759-6

Article  CAS  Google Scholar 

Maltais L.J., Blake J.A., Chu T., Lutz C.M., Eppig J.T., Jackson I. 2002. Rules and guidelines for mouse gene, allele, and mutation nomenclature: a condensed version. Genomics. 79 (4), 471‒474. https://doi.org/10.1006/geno.2002.6747

Article  CAS  Google Scholar 

Everhart J.E., Wright E.C., Goodman Z.D., Dienstag J.L., Hoefs J.C., Kleiner D.E., Ghany M.G., Mills A.S., Nash S.R., Govindarajan S., Rogers T.E., Greenson J.K., Brunt E.M., Bonkovsky H.L., Morishima C., Litman H.J. 2010. HALT-C Trial Group. Prognostic value of Ishak fibrosis stage: findings from the hepatitis C antiviral long-term treatment against cirrhosis trial. Hepatology. 51 (2), 585‒594. https://doi.org/10.1002/hep.23315

Article  Google Scholar 

Lebedeva E.I., Shchastny A.T., Babenko A.S. 2022. Stability dynamics of sdha, hprt, prl3d1, and hes1 gene expression in a rat liver fibrosis model. J. Biomed. 18 (2), 17–30.

Article  Google Scholar 

Sharma N., Shaikh T.B., Eedara A., Kuncha M., Sistla R., Andugulapati S.B. 2022. Dehydrozingerone ameliorates thioacetamide-induced liver fibrosis via inhibition of hepatic stellate cells activation through modulation of the MAPK pathway. Eur. J. Pharmacol. 937, 175366. https://doi.org/10.1016/j.ejphar.2022.175366

Article  CAS  Google Scholar 

Chandrashekar D.V., DuBois B.N., Rashid M., Mehvar R. 2023. Effects of chronic cirrhosis induced by intraperitoneal thioacetamide injection on the protein content and Michaelis-Menten kinetics of cytochrome P450 enzymes in the rat liver microsomes. Basic Clin. Pharmacol. Toxicol. 132 (2), 197‒210. https://doi.org/10.1111/bcpt.13813

Article  CAS  Google Scholar 

Shareef S.H., Al-Medhtiy M.H., Al Rashdi A.S., Aziz P.Y., Abdulla M.A. 2023. Hepatoprotective effect of pinostrobin against thioacetamide-induced liver cirrhosis in rats. Saudi J. Biol. Sci. 30 (1), 103506. https://doi.org/10.1016/j.sjbs.2022.103506

Article  CAS  Google Scholar 

Walther C.P., Benoit J.S. 2021. Tubular kidney biomarker insights through factor analysis. Am. J. Kidney Dis. 78 (3), 335‒337. https://doi.org/10.1053/j.ajkd.2021.03.016

Article  Google Scholar 

Muthiah M.D., Huang D.Q., Zhou L., Jumat N.H., Choolani M., Chan J.K.Y., Wee A., Lim S.G., Dan Y.Y. 2019. A murine model demonstrating reversal of structural and functional correlates of cirrhosis with progenitor cell transplantation. Sci. Rep. 9 (1), 15446. https://doi.org/10.1038/s41598-019-51189-7

Article  CAS  Google Scholar 

Ezhilarasan D. 2023. Molecular mechanisms in thioacetamide-induced acute and chronic liver injury models. Environ. Toxicol. Pharmacol. 104093. https://doi.org/10.1016/j.etap.2023.104093

Lebedeva E.I., Shchastny A.T., Babenko A.S. 2022. Decrease in ANG and VEGF mRNA levels during progressive angiogenesis of the liver venous system of Wistar rats in experimental. Mol. Med. 20 (2), 53‒61.

Google Scholar 

留言 (0)

沒有登入
gif