Structure and Evolution of DNA Transposons of the L31 Superfamily in Bivalves

Arkhipova I.R., Yushenova I.A. 2019. Giant transposons in eukaryotes: Is bigger better? Genome Biol. Evol. 11, 906–918. https://doi.org/10.1093/gbe/evz041

Article  CAS  Google Scholar 

Bourque G., Burns K.H., Gehring M., Gorbunova V., Seluanov A., Hammell M., Imbeault M., Izsvák Z., Levin H.L., Macfarlan T.S., Mager D.L., Feschotte C. 2018. Ten things you should know about transposable elements. Genome Biol. 19, 199. https://doi.org/10.1186/s13059-018-1577-z

Article  CAS  Google Scholar 

Kidwell M.G., Lisch D.R. 2000. Transposable elements and host genome evolution. Trends Ecol. Evol. 15, 95–99. https://doi.org/10.1016/s0169-5347(99)01817-0

Article  CAS  Google Scholar 

Sotero-Caio C.G., Platt R.N., Suh A., Ray D.A. 2017. Evolution and diversity of transposable elements in vertebrate genomes. Genome Biol. Evol. 9, 161–177. https://doi.org/10.1093/gbe/evw264

Article  CAS  Google Scholar 

Gao B., Shen D., Xue S. Chen C., Cui H., Song C. 2016. The contribution of transposable elements to size variations between four teleost genomes. Mob. DNA. 7, 4. https://doi.org/10.1186/s13100-016-0059-7

Article  Google Scholar 

Petrov D.A. 2001. Evolution of genome size: New approaches to an old problem. Trends Genet. 17, 23–28. https://doi.org/10.1016/s0168-9525(00)02157-0

Article  CAS  Google Scholar 

Yurchenko N.N., Kovalenko L.V., Zakharov I.K. 2011. Transposable elements: Instability of genes and genomes. Russ. J. Genet., Appl. Res. 1, 489‒496.

Google Scholar 

Grabundzija I., Messing S.A., Thomas J. Cosby R.L., Bilic I., Miskey C., Gogol-Döring A., Kapitonov V., Diem T., Dalda A., Jurka J., Pritham E.J., Dyda F., Izsvák Z., Ivics Z. 2016. A Helitron transposon reconstructed from bats reveals a novel mechanism of genome shuffling in eukaryotes. Nat. Commun. 7, 10716. https://doi.org/10.1038/ncomms10716

Article  CAS  Google Scholar 

Craig N.L., Chandler M., Gellert M., Lambowitz A., Rice P.A., Sandmeyer S. 2015. Mobile DNA III. Washington, USA: ASM Press.

Book  Google Scholar 

Sultana T., Zamborlini A., Cristofari G., Lesage P. 2017. Integration site selection by retroviruses and transposable elements in eukaryotes. Nat. Rev. Genet. 18, 292–308. https://doi.org/10.1038/nrg.2017.7

Article  CAS  Google Scholar 

Blumenstiel J.P. 2019. Birth, school, work, death, and resurrection: The life stages and dynamics of transposable element proliferation. Genes (Basel). 10, 336. https://doi.org/10.3390/genes10050336

Article  CAS  Google Scholar 

Bowen N.J., Jordan I.K. 2007. Exaptation of protein coding sequences from transposable elements. Genome Dyn. 3, 147–162.

Article  CAS  Google Scholar 

Venner S., Feschotte C., Biémont C. 2009. Dynamics of transposable elements: Towards a community ecology of the genome. Trends Genet. 25, 317–323.

Article  CAS  Google Scholar 

Boissinot S., Chevret P., Furano A.V. 2000. L1 (LINE‑1) retrotransposon evolution and amplification in recent human history. Mol. Biol. Evol. 17, 915–928. https://doi.org/10.1093/oxfordjournals.molbev.a026372

Article  CAS  Google Scholar 

Platt R.N. 2nd, Vandewege M.W., Ray D.A. 2018. Mammalian transposable elements and their impacts on genome evolution. Chromosome Res. 26, 25–43. https://doi.org/10.1007/s10577-017-9570-z

Article  CAS  Google Scholar 

Sinzelle L., Izsvák Z., Ivics Z. 2009. Molecular domestication of transposable elements: From detrimental parasites to useful host genes. Cell. Mol. Life Sci. 66, 1073–1093. https://doi.org/10.1007/s00018-009-8376-3

Article  CAS  Google Scholar 

Chow K.C., Tung W.L. 2000. Magnetic field exposure stimulates transposition through the induction of DnaK/J synthesis. Biochem. Biophys. Res. Commun. 270, 745–748. https://doi.org/10.1006/bbrc.2000.2496

Article  CAS  Google Scholar 

Bubenshchikova E.V., Antonenko O.V., Vasilyeva L.A., Ratner V.A. 2002. Induction of MGE 412 transpositions in spermatogenesis of Drosophila males separately by heat and cold shock. Russ. J. Genetics. 38, 36‒43.

Article  CAS  Google Scholar 

Del Re B., Garoia F., Mesirca P. Agostini C., Bersani F., Giorgi G. 2003. Extremely low frequency magnetic fields affect transposition activity in Escherichia coli. Radiat. Environ. Biophys. 42, 113–118. https://doi.org/10.1007/s00411-003-0192-9

Article  CAS  Google Scholar 

Zakharenko L.P., Kovalenko L.V., Zakharov I.K., Perepelkina M.P. 2006. The effect of γ-radiation on induction of the hobo element transposition in Drosophila melanogaster. Russ. J. Genet. 42, 619‒622.

Article  CAS  Google Scholar 

Vasilyeva L.A., Vikhristyuk O.V., Antonenko O.V., Zakharov I.K. 2008. Induction of mobile genetic elements transposition in Drosophila melanogaster genome by different stress factors. Inform. Vestn. VOGiS. 11, 662‒671.

Google Scholar 

Cheresiz S.V., Yurchenko N.N., Ivannikov A.V., Zakharov I.K. 2008. Mobile elements and stress. Inform. Vestn. VOGiS. 12, 217–242.

Google Scholar 

Piacentini L., Fanti L., Specchia V., Bozzetti M.P., Berloco M., Palumbo G., Pimpinelli S. 2014. Transposons, environmental changes, and heritable induced phenotypic variability. Chromosoma. 123, 345–354. https://doi.org/10.1007/s00412-014-0464-y

Article  Google Scholar 

Auvinet J., Graça P., Belkadi L., Petit L., Bonnivard E., Dettaï A., Detrich W.H. 3rd, Ozouf-Costaz C., Higuet D. 2018. Mobilization of retrotransposons as a cause of chromosomal diversification and rapid speciation: The case for the Antarctic teleost genus Trematomus. BMC Genomics. 19, 339. https://doi.org/10.1186/s12864-018-4714-x

Article  CAS  Google Scholar 

Kojima K.K. 2020. Structural and sequence diversity of eukaryotic transposable elements. Genes Genet. Syst. 94, 233–252. https://doi.org/10.1266/ggs.18-00024

Article  CAS  Google Scholar 

Kapitonov V.V., Jurka J. 2008. A universal classification of eukaryotic transposable elements implemented in Repbase. Nat. Rev. Genet. 9, 411–412. https://doi.org/10.1038/nrg2165-c1

Article  Google Scholar 

Wicker T., Sabot F., Hua-Van A., Bennetzen J.L., Capy P., Chalhoub B., Flavell A., Leroy P., Morgante M., Panaud O., Paux E., SanMiguel P., Schulman A.H. 2007. A unified classification system for eukaryotic transposable elements. Nat. Rev. Genet. 8, 973–982. https://doi.org/10.1038/nrg2165

Article  CAS  Google Scholar 

Yuan Y.W., Wessler S.R. 2011. The catalytic domain of all eukaryotic cut-and-paste transposase superfamilies. Proc. Natl. Acad. Sci. U. S. A. 108, 7884–7889. https://doi.org/10.1073/pnas.110420810829

Article  CAS  Google Scholar 

Shi S., Puzakov M., Guan Z., Xiang K., Diaby M., Wang Y., Wang S., Song C., Gao B. 2021. Prokaryotic and eukaryotic horizontal transfer of Sailor (dd82e), a new superfamily of IS630-Tc1-Mariner DNA-transposons. Biology (Basel). 10, 1005. https://doi.org/10.3390/biology10101005

Article  CAS  Google Scholar 

Dupeyron M., Baril T., Bass C., Hayward A. 2020. Phylogenetic analysis of the Tc1/mariner superfamily reveals the unexplored diversity of pogo-like elements. Mob. DNA. 11, 21. https://doi.org/10.1186/s13100-020-00212-0

Article  Google Scholar 

Shao H.G., Tu Z.J. 2001. Expanding the diversity of the IS630-Tc1-mariner superfamily: Discovery of a unique DD37E transposon and reclassification of the DD37D and DD39D transposons. Genetics. 159, 1103–1115. https://doi.org/10.1093/genetics/159.3.1103

Article  CAS  Google Scholar 

Tellier M., Bouuaert C.C., Chalmers R. 2015. Mariner and the ITm superfamily of transposons. Microbiol. Spectr. 3, MDNA3-0033-2014. https://doi.org/10.1128/microbiolspec.MDNA3-0033-2014

Gao B., Wang Y.L., Diaby M., Zong W., Shen D., Wang S., Chen C., Wang X., Song C. 2020. Evolution of pogo, a separate superfamily of IS630-Tc1-mariner transposons, revealing recurrent domestication events in vertebrates. Mob. DNA. 11, 25.

Article  CAS  Google Scholar 

Coy M.R., Tu Z.J. 2010. Gambol and Tc1 are two distinct families of DD34E transposons: Analysis of the Anopheles gambiae genome expands the diversity of the IS630-Tc1-mariner superfamily. Insect Mol. Biol. 14, 537–546. https://doi.org/10.1111/j.1365-2583.2005.00584.x

Article  CAS  Google Scholar 

Puzakov M.V., Puzakova L.V., Cheresiz S.V. 2018. An analysis of IS630/Tc1/mariner transposons in the genome of a pacific oyster Crassostrea gigas. J. Mol. Evol. 86, 566–580. https://doi.org/10.1007/s00239-018-9868-2

Article  CAS  Google Scholar 

Altschul S.F., Madden T.L., Schäffer A.A., Zhang J., Zhang Z., Miller W., Lipman D.J. 1997. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402. https://doi.org/10.1093/nar/25.17.3389

Article  CAS  Google Scholar 

Yamada K.D., Tomii K., Katoh K. 2016. Application of the MAFFT sequence alignment program to large data—reexamination of the usefulness of chained guide trees. Bioinformatics. 32, 3246–3251. https://doi.org/10.1093/bioinformatics/btw4122016

Article  CAS  Google Scholar 

Nguyen L.T., Schmidt H.A., von Haeseler A., Minh B.Q. 2015. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268‒274. https://doi.org/10.1093/molbev/msu30039

Article  CAS  Google Scholar 

Hoang D.T., Chernomor O., von Haeseler A., Minh B.Q., Vinh L.S. 2018. UFBoot2: Improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522. https://doi.org/10.1093/molbev/msx281

Article  CAS  Google Scholar 

Kalyaanamoorthy S., Minh B.Q., Wong T.K.F., von Haeseler A., Jermiin L.S. 2017. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods. 14, 587–589. https://doi.org/10.1038/nmeth.4285

Article  CAS  Google Scholar 

Zhang H.H., Li G.Y., Xiong X.M., Han M.J., Zhang X.G., Dai F.Y. 2016. TRT,

留言 (0)

沒有登入
gif