Cardiac progenitor cell therapy: mechanisms of action

Braunwald E. The war against heart failure: the Lancet lecture. Lancet. 2015;385(9970):812–24. https://doi.org/10.1016/s0140-6736(14)61889-4.

Article  PubMed  Google Scholar 

Yancy CW, et al. 2017 ACC/AHA/HFSA focused update of the 2013 ACCF/AHA Guideline for the management of Heart failure: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice guidelines and the heart failure society of Amer. Circulation. 2016;134(13). https://doi.org/10.1161/CIR.0000000000000509.

Ziaeian B, Fonarow GC. Epidemiology and aetiology of heart failure. Nat Rev Cardiol. Jun. 2016;13(6):368–78. https://doi.org/10.1038/nrcardio.2016.25.

Shah KS, et al. Heart failure with preserved, Borderline, and reduced ejection fraction. J Am Coll Cardiol. 2017;70(20):2476–86. https://doi.org/10.1016/j.jacc.2017.08.074.

Article  PubMed  Google Scholar 

Virani SS, et al. Heart Disease and Stroke Statistics—2023 update: a Report from the American Heart Association. Circulation. 2021;148(4). https://doi.org/10.1161/CIR.0000000000000950.

Yancy CW, et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation. 2013;128(16). https://doi.org/10.1161/CIR.0b013e31829e8776.

Urbich M et al. Nov., A Systematic Review of Medical Costs Associated with Heart Failure in the USA (2014–2020), Pharmacoeconomics, vol. 38, no. 11, pp. 1219–1236, 2020, https://doi.org/10.1007/s40273-020-00952-0.

McDonagh TA, et al. 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021;43(6):440–1. https://doi.org/10.1093/eurheartj/ehab368.

Article  CAS  Google Scholar 

Miller L, Birks E, Guglin M, Lamba H, Frazier OH. Use of Ventricular Assist devices and Heart Transplantation for Advanced Heart failure. Circ Res. 2019;124(11):1658–78. https://doi.org/10.1161/circresaha.119.313574.

Article  CAS  PubMed  Google Scholar 

Ilieșiu AM, Hodorogea AS. Treatment of Heart failure with preserved ejection fraction. Advances in Experimental Medicine and Biology. Springer International Publishing; 2018. pp. 67–87. https://doi.org/10.1007/5584_2018_149.

Chung JS, Emerson D, Megna D, Arabia FA. Total artificial heart: surgical technique in the patient with normal cardiac anatomy, Ann. Cardiothorac. Surg, vol. 9, no. 2, pp. 818–888, Mar. 2020, https://doi.org/10.21037/ACS.2020.02.09.

Henn MC, Mokadam NA. Total artificial heart as a bridge to transplantation, Curr. Opin. Organ Transplant, vol. 27, no. 3, pp. 222–228, Jun. 2022, https://doi.org/10.1097/MOT.0000000000000982.

Chen Q, et al. Heart transplantation after total artificial heart bridging-outcomes over 15 years. Clin Transpl. Nov. 2022;36(11). https://doi.org/10.1111/CTR.14781.

Olson EN, Schneider MD. Sizing up the heart: development redux in disease. Genes Dev. 2003;17(16):1937–56. https://doi.org/10.1101/gad.1110103.

Article  CAS  PubMed  Google Scholar 

Tam SKC, Gu W, Mahdavi V, Nadal-Ginard B. Cardiac myocyte terminal differentiation. Ann N Y Acad Sci. 1995;752(1):72–9. https://doi.org/10.1111/j.1749-6632.1995.tb17407.x.

Article  ADS  CAS  PubMed  Google Scholar 

Bergmann O, et al. Evidence for cardiomyocyte renewal in humans. Science. Apr. 2009;324(5923):98–102. https://doi.org/10.1126/science.1164680.

Hsieh PCH et al. Aug., Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury, Nat. Med, vol. 13, no. 8, pp. 970–974, 2007, https://doi.org/10.1038/nm1618.

Hsueh Y-C, Wu JMF, Yu C-K, Wu KK, Hsieh PCH. Prostaglandin E2 promotes post-infarction cardiomyocyte replenishment by endogenous stem cells, EMBO Mol. Med, vol. 6, no. 4, pp. 496–503, Apr. 2014, https://doi.org/10.1002/emmm.201303687.

Walsh S, Pontén A, Fleischmann BK, Jovinge S. Cardiomyocyte cell cycle control and growth estimation in vivo—an analysis based on cardiomyocyte nuclei. Cardiovasc Res. 2010;86(3):365–73. https://doi.org/10.1093/cvr/cvq005.

Article  CAS  PubMed  Google Scholar 

Nadal-Ginard B, Ellison GM, Torella D. The cardiac stem cell compartment is indispensable for myocardial cell homeostasis, repair and regeneration in the adult. Stem Cell Res. 2014;13(3):615–30. https://doi.org/10.1016/j.scr.2014.04.008.

Article  CAS  PubMed  Google Scholar 

Bergmann O, et al. Dynamics of cell generation and turnover in the Human Heart. Cell. 2015;161(7):1566–75. https://doi.org/10.1016/j.cell.2015.05.026.

Article  CAS  PubMed  Google Scholar 

Senyo SE, et al. Mammalian heart renewal by pre-existing cardiomyocytes. Nature. Jan. 2013;493(7432):433–6. https://doi.org/10.1038/nature11682.

Malliaras K et al. Feb., Cardiomyocyte proliferation and progenitor cell recruitment underlie therapeutic regeneration after myocardial infarction in the adult mouse heart, EMBO Mol. Med, vol. 5, no. 2, pp. 191–209, 2013, https://doi.org/10.1002/emmm.201201737.

Scalise M, et al. Heterogeneity of adult cardiac stem cells. Advances in Experimental Medicine and Biology. Springer International Publishing; 2019. pp. 141–78. https://doi.org/10.1007/978-3-030-24108-7_8.

Beltrami AP, et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell. Sep. 2003;114(6):763–76. https://doi.org/10.1016/S0092-8674(03)00687-1.

Kanazawa H et al. Mar., Cellular postconditioning: allogeneic cardiosphere-derived cells reduce infarct size and attenuate microvascular obstruction when administered after reperfusion in pigs with acute myocardial infarction, Circ. Heart Fail, vol. 8, no. 2, pp. 322–332, 2015, https://doi.org/10.1161/CIRCHEARTFAILURE.114.001484.

Nadal-Ginard B, Kajstura J, Leri A, Anversa P. Myocyte death, growth, and regeneration in cardiac hypertrophy and failure. Circ Res. Feb. 2003;92(2):139–50. https://doi.org/10.1161/01.RES.0000053618.86362.DF.

Wang L, et al. Role of cardiac progenitor cell-derived exosome‐mediated microRNA‐210 in cardiovascular disease. J Cell Mol Med. Nov. 2019;23(11):7124. https://doi.org/10.1111/JCMM.14562.

Le T, Chong J. Cardiac progenitor cells for heart repair. Cell Death Discov. Jul. 2016;2:16052. https://doi.org/10.1038/cddiscovery.2016.52.

Ge Z, Lal S, Le TYL, Dos Remedios C, Chong JJH. Cardiac stem cells: translation to human studies, Biophys. Rev, vol. 7, no. 1, pp. 127–139, Mar. 2015, https://doi.org/10.1007/s12551-014-0148-0.

Smith AJ, et al. Isolation and characterization of resident endogenous c-Kit + cardiac stem cells from the adult mouse and rat heart. Nat Protoc. 2014;9(7):1662–81. https://doi.org/10.1038/nprot.2014.113.

Article  CAS  PubMed  Google Scholar 

Fransioli J, et al. Evolution of the c-kit-positive cell response to pathological challenge in the myocardium. Stem Cells. May 2008;26(5):1315–24. https://doi.org/10.1634/stemcells.2007-0751.

Kawaguchi N et al. Dec., c-kitpos GATA-4 high rat cardiac stem cells foster adult cardiomyocyte survival through IGF-1 paracrine signalling, PLoS One, vol. 5, no. 12, pp. e14297–e14297, 2010, https://doi.org/10.1371/journal.pone.0014297.

Kulandavelu S, et al. Pim1 kinase overexpression enhances ckit + cardiac stem cell Cardiac Repair following myocardial infarction in Swine. J Am Coll Cardiol. Dec. 2016;68(22):2454–64. https://doi.org/10.1016/J.JACC.2016.09.925.

Lee ST et al. Jan., Intramyocardial injection of autologous cardiospheres or cardiosphere-derived cells preserves function and minimizes adverse ventricular remodeling in pigs with heart failure post-myocardial infarction, J. Am. Coll. Cardiol, vol. 57, no. 4, pp. 455–465, 2011, https://doi.org/10.1016/J.JACC.2010.07.049.

Malliaras K, et al. Safety and efficacy of allogeneic cell therapy in infarcted rats transplanted with mismatched cardiosphere-derived cells. Circulation. Jan. 2012;125(1):100–12. https://doi.org/10.1161/CIRCULATIONAHA.111.042598.

Tseliou E, et al. Allogeneic cardiospheres safely boost cardiac function and attenuate adverse remodeling after myocardial infarction in immunologically mismatched rat strains. J Am Coll Cardiol. 2013;61(10):1108–19. https://doi.org/10.1016/J.JACC.2012.10.052.

Article  PubMed  Google Scholar 

Malliaras K et al. Dec., Validation of contrast-enhanced magnetic resonance imaging to monitor regenerative efficacy after cell therapy in a porcine model of convalescent myocardial infarction, Circulation, vol. 128, no. 25, pp. 2764–2775, 2013, https://doi.org/10.1161/CIRCULATIONAHA.113.002863.

Williams AR et al. Jan., Enhanced effect of combining human cardiac stem cells and bone marrow mesenchymal stem cells to reduce infarct size and to restore cardiac function after myocardial infarction, Circulation, vol. 127, no. 2, pp. 213–223, 2013, https://doi.org/10.1161/CIRCULATIONAHA.112.131110.

Bolli R et al. Jul., Intracoronary delivery of autologous cardiac stem cells improves cardiac function in a porcine model of chronic ischemic cardiomyopathy, Circulation, vol. 128, no. 2, pp. 122–131, 2013, https://doi.org/10.1161/CIRCULATIONAHA.112.001075.

Welt FGP, et al. Effect of cardiac stem cells on left-ventricular remodeling in a canine model of chronic myocardial infarction. Circ Heart Fail. Jan. 2013;6(1):99–106. https://doi.org/10.1161/CIRCHEARTFAILURE.112.972273.

Bolli R, et al. Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet (London England). 2011;378:1847–57. https://doi.org/10.1016/S0140-6736(11)61590-0.

Article  PubMed  Google Scholar 

Editors TL. Retraction-cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet (London England). Mar. 2019;393:1084. https://doi.org/10.1016/S0140-6736(19)30542-2.

Liu Q, et al. Genetic lineage tracing identifies in situ kit-expressing cardiomyocytes. Cell Res. Jan. 2016;26(1):119–30. https://doi.org/10.1038/cr.2015.143.

Sultana N, et al. Resident c-kit(+) cells in the heart are not cardiac stem cells. Nat Commun. Oct. 2015;6:8701. https://doi.org/10.1038/ncomms9701.

van Berlo JH, et al. c-kit + cells minimally contribute cardiomyocytes to the heart. Nature. May 2014;509(7500):337–41. https://doi.org/10.1038/nature13309.

Vicinanza C et al. Dec., Adult cardiac stem cells are multipotent and robustly myogenic: c-kit expression is necessary but not sufficient for their identification, Cell Death Differ, vol. 24, no. 12, pp. 2101–2116, 2017, https://doi.org/10.1038/cdd.2017.130.

Messina E, et al. Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ Res. 2004;95(9):911–21. https://doi.org/10.1161/01.res.0000147315.71699.51.

Article  CAS  PubMed  Google Scholar 

Smith RR, et al. Regenerative potential of Cardiosphere-Derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation. 2007;115(7):896–908. https://doi.org/10.1161/circulationaha.106.655209.

Article  PubMed  Google Scholar 

Makkar RR, et al. Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet (London England). Mar. 2012;379:895–904. https://doi.org/10.1016/S0140-6736(12)60195-0.

Malliaras K, et al. Intracoronary cardiosphere-derived cells after myocardial infarction: evidence of therapeutic regeneration in the final 1-year results of the CADUCEUS trial (CArdiosphere-Derived aUtologous stem CElls to reverse ventricUlar dySfunction). J Am Coll Cardiol. Jan. 2014;63(2):110–22. https://doi.org/10.1016/J.JACC.2013.08.724.

Chugh AR, et al. Administration of cardiac stem cells in patients with ischemic cardiomyopathy: the SCIPIO trial: surgical aspects and interim analysis of myocardial function and viability by magnetic resonance. Circulation. Sep. 2012;126(11 Suppl 1). https://doi.org/10.1161/CIRCULATIONAHA.112.092627.

Ishigami S, et al. Intracoronary autologous cardiac progenitor cell transfer in patients with hypoplastic left heart syndrome: the TICAP prospective phase 1 controlled trial. Circ Res. Feb. 2015;116(4):653–64. https://doi.org/10.1161/CIRCRESAHA.116.304671.

Makkar RR et al. Sep., Intracoronary ALLogeneic heart STem cells to Achieve myocardial Regeneration (ALLSTAR): a randomized, placebo-controlled, double-blinded trial, Eur. Heart J, vol. 41, no. 36, pp. 3451–3458, 2020, https://doi.org/10.1093/EURHEARTJ/EHAA541.

Ishigami S et al. Mar., Intracoronary Cardiac Progenitor Cells in Single Ventricle Physiology: The PERSEUS (Cardiac Progenitor Cell Infusion to Treat Univentricular Heart Disease) Randomized Phase 2 Trial, Circ. Res, vol. 120, no. 7, pp. 1162–1173, 2017, https://doi.org/10.1161/CIRCRESAHA.116.310253.

Sano T et al. Mar., Impact of Cardiac Progenitor Cells on Heart Failure and Survival in Single Ventricle Congenital Heart Disease, Circ. Res, vol. 122, no. 7, pp. 994–1005, 2018, https://doi.org/10.1161/CIRCRESAHA.117.312311.

Menasché P, et al. Transplantation of Human Embryonic Stem Cell-Derived Cardiovascular progenitors for severe ischemic left ventricular dysfunction. J Am Coll Cardiol. Jan. 2018;71(4):429–38. https://doi.org/10.1016/J.JACC.2017.11.047.

Sanz-Ruiz R et al. Jun., Rationale and Design of a Clinical Trial to Evaluate the Safety and Efficacy of Intracoronary Infusion of Allogeneic Human Cardiac Stem Cells in Patients With Acute Myocardial Infarction and Left Ventricular Dysfunction: The Randomized Multicenter Double-Blind Controlled CAREMI Trial (Cardiac Stem Cells in Patients With Acute Myocardial Infarction), Circ. Res, vol. 121, no. 1, pp. 71–80, 2017, https://doi.org/10.1161/CIRCRESAHA.117.310651.

Fernández-Avilés F, et al. Safety and Efficacy of Intracoronary infusion of Allogeneic Human Cardiac Stem cells in patients with ST-Segment Elevation myocardial infarction and left ventricular dysfunction. Circ Res. 2018;123(5):579–89. https://doi.org/10.1161/CIRCRESAHA.118.312823.

Article  MathSciNet  CAS  PubMed  Google Scholar 

Bolli R et al. Apr., A Phase II study of autologous mesenchymal stromal cells and c-kit positive cardiac cells, alone or in combination, in patients with ischaemic heart failure: the CCTRN CONCERT-HF trial, Eur. J. Heart Fail, vol. 23, no. 4, pp. 661–674, 2021, https://doi.org/10.1002/EJHF.2178.

Taylor M et al. Feb., Cardiac and skeletal muscle effects in the randomized HOPE-Duchenne trial, Neurology, vol. 92, no. 8, pp. E866–E878, 2019, https://doi.org/10.1212/WNL.0000000000006950.

Hirai K, et al. Cardiosphere-derived exosomal microRNAs for myocardial repair in pediatric dilated cardiomyopathy. Sci Transl Med. Dec. 2020;12(573). https://doi.org/10.1126/SCITRANSLMED.ABB3336.

Li X-H et al. Dec., Generation of Functional Human Cardiac Progenitor Cells by High-Efficiency Protein Transduction, Stem Cells Transl. Med, vol. 4, no. 12, pp. 1415–1424, 2015, https://doi.org/10.5966/SCTM.2015-0136.

Nsair A, et al. Characterization and therapeutic potential of Induced Pluripotent Stem Cell-Derived Cardiovascular Progenitor cells. PLoS ONE. Oct. 2012;7(10). https://doi.org/10.1371/JOURNAL.PONE.0045603.

Birket MJ, Mummery CL. Pluripotent stem cell derived cardiovascular progenitors – A developmental perspective, Dev. Biol, vol. 400, no. 2, pp. 169–179, Apr. 2015, https://doi.org/10.1016/J.YDBIO.2015.01.012.

Takahashi K et al. Nov., Induction of pluripotent stem cells from adult human fibroblasts by defined factors, Cell, vol. 131, no. 5, pp. 861–872, 2007, https://doi.org/10.1016/J.CELL.2007.11.019.

Lian X, et al. Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/β-catenin signaling under fully defined conditions. Nat Protoc. Jan. 2013;8(1):162–75. https://doi.org/10.1038/NPROT.2012.150.

Olmer R et al. Jul., Long term expansion of undifferentiated human iPS and ES cells in suspension culture using a defined medium, Stem Cell Res, vol. 5, no. 1, pp. 51–64, 2010, https://doi.org/10.1016/J.SCR.2010.03.005.

Moretti A et al. Dec., Multipotent Embryonic Isl1 + Progenitor Cells Lead to Cardiac, Smooth Muscle, and Endothelial Cell Diversification, Cell, vol. 127, no. 6, pp. 1151–1165, 2006, https://doi.org/10.1016/J.CELL.2006.10.029.

Kattman SJ, Huber TL, Keller GMM. Multipotent Flk-1 + Cardiovascular Progenitor Cells Give Rise to the Cardiomyocyte, Endothelial, and Vascular Smooth Muscle Lineages, Dev. Cell, vol. 11, no. 5, pp. 723–732, Nov. 2006, https://doi.org/10.1016/J.DEVCEL.2006.10.002.

Elliott DA et al. Dec., NKX2-5(eGFP/w) hESCs for isolation of human cardiac progenitors and cardiomyocytes, Nat. Methods, vol. 8, no. 12, pp. 1037–1043, 2011, https://doi.org/10.1038/NMETH.1740.

Drowley L, et al. Human Induced Pluripotent Stem Cell-Derived Cardiac Progenitor cells in phenotypic screening: a transforming growth Factor- β type 1 receptor kinase inhibitor induces efficient Cardiac differentiation. Stem Cells Transl Med. Feb. 2016;5(2):164–74. https://doi.org/10.5966/SCTM.2015-0114/-/DC1.

Zhou M, et al. Generation of a human iPSC line GIBHi002-A-2 with a dual-reporter for NKX2-5 using TALENs. Stem Cell Res. Jan. 2020;50. https://doi.org/10.1016/J.SCR.2020.102120.

Malliaras K, Marbán E. Cardiac cell therapy: where we’ve been, where we are, and where we should be headed. Br Med Bull. 2011;98(1):161–85. https://doi.org/10.1093/bmb/ldr018.

Article  PubMed  PubMed Central  Google Scholar 

Pagano F, et al. The Biological mechanisms of Action of Cardiac Progenitor Cell Therapy. Curr Cardiol Rep. 2018;20(10). https://doi.org/10.1007/s11886-018-1031-6.

Chimenti I et al. Mar., Relative roles of direct regeneration versus paracrine effects of human cardiosphere-derived cells transplanted into infarcted mice, Circ. Res, vol. 106, no. 5, pp. 971–980, 2010,

留言 (0)

沒有登入
gif