Indoleamine 2,3-dioxygenase 1-mediated iron metabolism in macrophages contributes to lipid deposition in nonalcoholic steatohepatitis

Shiha G, Korenjak M, Eskridge W, et al. Redefining fatty liver disease: an international patient perspective. Lancet Gastroenterol. 2021;6:73–9.

Google Scholar 

Devarbhavi H, Asrani SK, Arab JP, et al. Global burden of liver disease: 2023 update. J Hepatol. 2023;79:516–37.

Article  PubMed  Google Scholar 

Friedman SL, Neuschwander-Tetri BA, Rinella M, et al. Mechanisms of NAFLD development and therapeutic strategies. Nat Med. 2018;24:908–22.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Powell EE, Wong VW, Rinella M. Non-alcoholic fatty liver disease. Lancet. 2021;397:2212–24.

Article  CAS  PubMed  Google Scholar 

Wong VW, Chitturi S, Wong GL, et al. Pathogenesis and novel treatment options for non-alcoholic steatohepatitis. Lancet Gastroenterol. 2016;1:56–67.

Google Scholar 

Dixon LJ, Barnes M, Tang H, et al. Kupffer cells in the liver. Compr Physiol. 2013;3:785–97.

Article  PubMed  PubMed Central  Google Scholar 

Remmerie A, Martens L, Thone T, et al. Osteopontin expression identifies a subset of recruited macrophages distinct from kupffer cells in the fatty liver. Immunity. 2020;53:641–57.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Reid DT, Reyes JL, McDonald BA, et al. Kupffer cells undergo fundamental changes during the development of experimental NASH and are critical in initiating liver damage and inflammation. PLoS ONE. 2016;11: e0159524.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tran S, Baba I, Poupel L, et al. Impaired Kupffer cell self-renewal alters the liver response to lipid overload during non-alcoholic steatohepatitis. Immunity. 2020;53:627–40.

Article  CAS  PubMed  Google Scholar 

Turlin B, Mendler MH, Moirand R, et al. Histologic features of the liver in insulin resistance-associated iron overload. A study of 139 patients. Am J Clin Pathol. 2001;116:263–70.

Article  CAS  PubMed  Google Scholar 

Lecube A, Hernandez C, Simo R. Glucose abnormalities in non-alcoholic fatty liver disease and chronic hepatitis C virus infection: the role of iron overload. Diabetes-Metab Res. 2009;25:403–10.

Article  CAS  Google Scholar 

Valenti L, Corradini E, Adams LA, et al. Consensus Statement on the definition and classification of metabolic hyperferritinaemia. Nat Rev Endocrinol. 2023;19:299–310.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Valenti L, Dongiovanni P, Fracanzani AL, et al. Increased susceptibility to nonalcoholic fatty liver disease in heterozygotes for the mutation responsible for hereditary hemochromatosis. Digest Liver Dis. 2003;35:172–8.

Article  CAS  Google Scholar 

Dongiovanni P, Fracanzani AL, Fargion S, et al. Iron in fatty liver and in the metabolic syndrome: a promising therapeutic target. J Hepatol. 2011;55:920–32.

Article  CAS  PubMed  Google Scholar 

Datz C, Felder TK, Niederseer D, et al. Iron homeostasis in the metabolic syndrome. Eur J Clin Invest. 2013;43:215–24.

Article  CAS  PubMed  Google Scholar 

Valenti L, Fracanzani AL, Bugianesi E, et al. HFE genotype, parenchymal iron accumulation, and liver fibrosis in patients with nonalcoholic fatty liver disease. Gastroenterology. 2010;138:905–12.

Article  CAS  PubMed  Google Scholar 

Kowdley KV, Belt P, Wilson LA, et al. Serum ferritin is an independent predictor of histologic severity and advanced fibrosis in patients with nonalcoholic fatty liver disease. Hepatology. 2012;55:77–85.

Article  CAS  PubMed  Google Scholar 

Valenti L, Dongiovanni P, Fargion S. Diagnostic and therapeutic implications of the association between ferritin level and severity of nonalcoholic fatty liver disease. World J Gastroenterol. 2012;18:3782–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pallotta MT, Rossini S, Suvieri C, et al. Indoleamine 2,3-dioxygenase 1 (IDO1): an up-to-date overview of an eclectic immunoregulatory enzyme. FEBS J. 2022;289:6099–118.

Article  CAS  PubMed  Google Scholar 

Salminen A. Role of indoleamine 2,3-dioxygenase 1 (IDO1) and kynurenine pathway in the regulation of the aging process. Ageing Res Rev. 2022;75: 101573.

Article  CAS  PubMed  Google Scholar 

Sono M. The roles of superoxide anion and methylene blue in the reductive activation of indoleamine 2,3-dioxygenase by ascorbic acid or by xanthine oxidase-hypoxanthine. J Biol Chem. 1989;264:1616–22.

Article  CAS  PubMed  Google Scholar 

Li Y, Song Y, Deng G, et al. Indoleamine 2, 3-dioxygenase 1 aggravates acetaminophen-induced acute liver failure by triggering excess nitroxidative stress and iron accumulation. Free Radic Biol Med. 2021;172:578–89.

Article  CAS  PubMed  Google Scholar 

Oxenkrug G. Insulin resistance and dysregulation of tryptophan-kynurenine and kynurenine-nicotinamide adenine dinucleotide metabolic pathways. Mol Neurobiol. 2013;48:294–301.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mondanelli G, Albini E, Orecchini E, et al. Pathogenetic interplay between IL-6 and tryptophan metabolism in an experimental model of obesity. Front Immunol. 2021;12: 713989.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Krenkel O, Hundertmark J, Abdallah AT, et al. Myeloid cells in liver and bone marrow acquire a functionally distinct inflammatory phenotype during obesity-related steatohepatitis. Gut. 2020;69:551–63.

Article  CAS  PubMed  Google Scholar 

Cao W, Pan J, Mo K, et al. Effects of gene silencing of indoleamine 2,3-dioxygenase 1 combined with rosmarinic acid on tumor immune microenvironment in H22 tumor-bearing mice. Int Immunopharmacol. 2023;119: 110193.

Article  CAS  PubMed  Google Scholar 

Solvay M, Holfelder P, Klaessens S, et al. Tryptophan depletion sensitizes the AHR pathway by increasing AHR expression and GCN2/LAT1-mediated kynurenine uptake, and potentiates induction of regulatory T lymphocytes. J Immunother Cancer. 2023;11: e006728.

Article  PubMed  PubMed Central  Google Scholar 

Wang T, Song Y, Ai Z, et al. Pulsatilla chinensis saponins ameliorated murine depression by inhibiting intestinal inflammation mediated IDO1 overexpression and rebalancing tryptophan metabolism. Phytomedicine. 2023;116: 154852.

Article  CAS  PubMed  Google Scholar 

Musso G, Gambino R, Cassader M. Cholesterol metabolism and the pathogenesis of non-alcoholic steatohepatitis. Prog Lipid Res. 2013;52:175–91.

Article  CAS  PubMed  Google Scholar 

Musso G, Saba F, Cassader M, et al. Lipidomics in pathogenesis, progression and treatment of nonalcoholic steatohepatitis (NASH): recent advances. Prog Lipid Res. 2023;91: 101238.

Article  CAS  PubMed  Google Scholar 

Van Rooyen DM, Larter CZ, Haigh WG, et al. Hepatic free cholesterol accumulates in obese, diabetic mice and causes nonalcoholic steatohepatitis. Gastroenterology. 2011;141(1393–403):1401–3.

Google Scholar 

Wouters K, van Bilsen M, van Gorp PJ, et al. Intrahepatic cholesterol influences progression, inhibition and reversal of non-alcoholic steatohepatitis in hyperlipidemic mice. FEBS Lett. 2010;584:1001–5.

Article  CAS  PubMed  Google Scholar 

Li X, Wang TX, Huang X, et al. Targeting ferroptosis alleviates methionine-choline deficient (MCD)-diet induced NASH by suppressing liver lipotoxicity. Liver Int. 2020;40:1378–94.

Article  CAS  PubMed  Google Scholar 

Qi J, Kim JW, Zhou Z, et al. Ferroptosis affects the progression of nonalcoholic steatohepatitis via the modulation of lipid peroxidation-mediated cell death in mice. Am J Pathol. 2020;190:68–81.

Article  CAS  PubMed  Google Scholar 

Handa P, Morgan-Stevenson V, Maliken BD, et al. Iron overload results in hepatic oxidative stress, immune cell activation, and hepatocellular ballooning injury, leading to nonalcoholic steatohepatitis in genetically obese mice. Am J Physiol Gastrintest Liver Physiol. 2016;310:G117–27.

Article  Google Scholar 

Umemura M, Kim JH, Aoyama H, et al. The iron chelating agent, deferoxamine detoxifies Fe(Salen)-induced cytotoxicity. J Pharmacol Sci. 2017;134:203–10.

Article  CAS  PubMed  Google Scholar 

Finazzi D, Arosio P. Biology of ferritin in mammals: an update on iron storage, oxidative damage and neurodegeneration. Arch Toxicol. 2014;88:1787–802.

Article  CAS  PubMed  Google Scholar 

Kawabata H. Transferrin and transferrin receptors update. Free Radic Biol Med. 2019;133:46–54.

Article  CAS 

留言 (0)

沒有登入
gif