Correlation between antimicrobial resistance, biofilm formation, and virulence determinants in uropathogenic Escherichia coli from Egyptian hospital

Walker MM, Roberts JA, Rogers BA, Harris PNA, Sime FB. Current and emerging treatment options for multidrug-resistant Escherichia coli urosepsis: A Review. Antibiotics MDPI. 2022. https://doi.org/10.3390/antibiotics11121821.

Article  Google Scholar 

Zagaglia C, Ammendolia MG, Maurizi L, Nicoletti M, Longhi C. Urinary tract infections caused by uropathogenic Escherichia coli strains—new strategies for an old pathogen. Microorganisms. 2022. https://doi.org/10.3390/microorganisms10071425.

Article  PubMed  PubMed Central  Google Scholar 

Gajdács M, Kárpáti K, Nagy ÁL, Gugolya M, Stájer A, Burián K. Association between biofilm-production and antibiotic resistance in Escherichia coli isolates: a laboratory-based case study and a literature review. Acta Microbiol Immunol Hung. 2021;68:217–26. https://doi.org/10.1556/030.2021.01487.

Article  CAS  Google Scholar 

CDC. 2019. Antibiotic resistance threats in the United States Atlanta, GA: US. Department of Health and Human Services. Department of Health and Human Services. Atlanta

Huang L, Huang C, Yan Y, Sun L, Li H. Urinary tract infection etiological profiles and antibiotic resistance patterns varied among different age categories: a retrospective study from a tertiary general hospital during a 12-year period. Front Microbiol. 2022. https://doi.org/10.3389/fmicb.2021.813145.

Article  PubMed  PubMed Central  Google Scholar 

El-Baky RMA, Ibrahim RA, Mohamed DS, Ahmed EF, Hashem ZS. Prevalence of virulence genes and their association with antimicrobial resistance among pathogenic E coli isolated from Egyptian patients with different clinical infections. Infect Drug Resist. 2020;13:1221–36. https://doi.org/10.2147/IDR.S241073.

Article  Google Scholar 

Torres-Puig S, García V, Stærk K, Andersen TE, Møller-Jensen J, Olsen JE, et al. “Omics” technologies, what have they told us about uropathogenic Escherichia coli fitness and virulence during urinary tract infection? Front Cell Infect Microbiol. 2022. https://doi.org/10.3389/fcimb.2022.824039.

Article  PubMed  PubMed Central  Google Scholar 

Halaji M, Fayyazi A, Rajabnia M, Zare D, Pournajaf A, Ranjbar R. Phylogenetic group distribution of uropathogenic Escherichia coli and related antimicrobial resistance pattern: a meta-analysis and systematic review. Front Cell Infect Microbiol. 2022. https://doi.org/10.3389/fcimb.2022.790184.

Article  PubMed  PubMed Central  Google Scholar 

Masoud SM, Abd El-Baky RM, Aly SA, Ibrahem RA. Co-existence of certain ESBLS, MBLS, and plasmid-mediated quinolone resistance genes among MDR E coli isolated from different clinical specimens in Egypt. Antibiotics. 2021. https://doi.org/10.3390/antibiotics10070835.

Article  PubMed  PubMed Central  Google Scholar 

Zeng Q, Xiao S, Gu F, He W, Xie Q, Yu F, et al. Antimicrobial resistance and molecular epidemiology of uropathogenic Escherichia coli isolated from female patients in Shanghai China. Front Cell Infect Microbiol. 2021. https://doi.org/10.3389/fcimb.2021.653983.

Article  PubMed  PubMed Central  Google Scholar 

El-baz R, Said HS, Abdelmegeed ES, Barwa R. Characterization of virulence determinants and phylogenetic background of multiple and extensively drug-resistant Escherichia Coli isolated from different clinical sources in Egypt. Appl Microbiol Biotechnol. 2022;106:1279–98. https://doi.org/10.1007/s00253-021-11740-x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tawfick MM, Elshamy AA, Mohamed KT, El Menofy NG. Gut commensal Escherichia coli, a high-risk reservoir of transferable plasmid-mediated antimicrobial resistance traits. Infect Drug Resist. 2022;15:1077–91. https://doi.org/10.2147/IDR.S354884.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Katongole P, Nalubega F, Florence NC, Asiimwe B, Andia I. Biofilm formation, antimicrobial susceptibility, and virulence genes of uropathogenic Escherichia coli isolated from clinical isolates in Uganda. BMC Infect Dis. 2020. https://doi.org/10.1186/s12879-020-05186-1.

Article  PubMed  PubMed Central  Google Scholar 

Ballén V, Cepas V, Ratia C, Gabasa Y, Soto SM. Clinical Escherichia coli: from biofilm formation to new anti-biofilm strategies. Microorganisms. 2022;10(6):1103. https://doi.org/10.3390/microorganisms10061103.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kenneally C, Murphy CP, Sleator RD, Culligan EP. The urinary microbiome and biological therapeutics: novel therapies for urinary tract infections. Microbiol Res. 2022;259: 127010. https://doi.org/10.1016/j.micres.2022.127010.

Article  CAS  PubMed  Google Scholar 

Lila ASA, Rajab AAH, Abdallah MH, Rizvi SMD, Moin A, Khafagy ES, et al. Biofilm lifestyle in recurrent urinary tract infections. Life MDPI. 2023. https://doi.org/10.3390/life13010148.

Article  Google Scholar 

Ballén V, Gabasa Y, Ratia C, Sánchez M, Soto S. Correlation between antimicrobial resistance, virulence determinants, and biofilm formation ability among extraintestinal pathogenic Escherichia coli strains isolated in Catalonia, Spain. Front Microbiol. 2022;11(12): 803862. https://doi.org/10.3389/fmicb.2021.803862.

Article  Google Scholar 

Poursina F, Sepehrpour S, Mobasherizadeh S. Biofilm formation in nonmultidrug-resistant Escherichia coli isolated from patients with urinary tract infection in Isfahan. Iran Adv Biomed Res. 2018;7:40. https://doi.org/10.4103/abr.abr_116_17.

Article  CAS  PubMed  Google Scholar 

Cusumano JA, Caffrey AR, Daffinee KE, Luther MK, Lopes V, LaPlante KL. Weak biofilm formation among carbapenem-resistant Klebsiella pneumoniae. Diagn Microbiol Infect Dis. 2019;95(4): 114877. https://doi.org/10.1016/j.diagmicrobio.2019.114877.

Article  CAS  PubMed  Google Scholar 

Shenkutie AM, Yao MZ, Siu GKH, Wong BKC, Leung PHM. Biofilm-induced antibiotic resistance in clinical Acinetobacter baumannii isolates. Antibiotics. 2020;9:1–15. https://doi.org/10.3390/antibiotics9110817.

Article  CAS  Google Scholar 

Yamani L, Alamri A, Alsultan A, Alfifi S, Ansari MA, Alnimr A. Inverse correlation between biofilm production efficiency and antimicrobial resistance in clinical isolates of Pseudomonas aeruginosa. Microb Pathog. 2021. https://doi.org/10.1016/j.micpath.2021.104989.

Article  PubMed  Google Scholar 

Carcione D, Leccese G, Conte G, Rossi E, Intra J, Bonomi A, et al. Lack of direct correlation between biofilm formation and antimicrobial resistance in clinical Staphylococcus epidermidis isolates from an Italian hospital. Microorganisms. 2022;10(6):1163. https://doi.org/10.3390/microorganisms10061163.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Donadu MG, Ferrari M, Mazzarello V, Zanetti S, Kushkevych I, Rittmann SKMR, et al. No correlation between biofilm-forming capacity and antibiotic resistance in environmental Staphylococcus spp In vitro results. Pathogens. 2022;11(4):471. https://doi.org/10.3390/pathogens11040471.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bottery MJ, Pitchford JW, Friman VP. Ecology and evolution of antimicrobial resistance in bacterial communities. ISME J. 2021. https://doi.org/10.1038/s41396-020-00832-7.

Article  PubMed  PubMed Central  Google Scholar 

Sundaramoorthy NS, Shankaran P, Gopalan V, Nagarajan S. New tools to mitigate drug resistance in Enterobacteriaceae-Escherichia coli and Klebsiella pneumoniae. Crit Rev Microbiol. 2022;1:1–20. https://doi.org/10.1080/1040841X.2022.2080525.

Article  Google Scholar 

Meena PR, Priyanka P, Rana A, Raj D, Singh AP. Alarming level of single or multidrug resistance in poultry environments-associated extraintestinal pathogenic Escherichia coli pathotypes with potential to affect One Health. Environ Microbiol Rep. 2022;14:400–11. https://doi.org/10.1111/1758-2229.13055.

Article  CAS  PubMed  Google Scholar 

Vega-Hernández R, Ochoa SA, Valle-Rios R, Jaimes-Ortega GA, Arellano-Galindo J, Aparicio-Ozores G, et al. Flagella, type-I fimbriae, and curli of uropathogenic Escherichia coli promote the release of proinflammatory cytokines in a coculture system. Microorganisms. 2021. https://doi.org/10.3390/microorganisms9112233.

Article  PubMed  PubMed Central  Google Scholar 

Subashchandrabose S, Mobley HLT. Virulence and fitness determinants of uropathogenic Escherichia coli. Microbiol Spectr. 2015. https://doi.org/10.1128/microbiolspec.uti-0015-2012.

Article  PubMed  Google Scholar 

Khalifa SM, Abd El-Aziz AM, Hassan R, Abdelmegeed ES. β-lactam resistance associated with β-lactamase production and porin alteration in clinical isolates of E coli and K pneumoniae. PLoS One. 2021. https://doi.org/10.1371/journal.pone.0251594.

Article  PubMed  PubMed Central  Google Scholar 

Firoozeh F, Zibaei M, Badmasti F, Khaledi A. Virulence factors, antimicrobial resistance, and the relationship between these characteristics in uropathogenic Escherichia coli. Gene Rep. 2022. https://doi.org/10.1016/j.genrep.2022.101622.

Article  Google Scholar 

Li J, Jiang F, Xie A, Jiang Y. Analysis of the distribution and drug resistance of pathogens in patients with urinary tract infection in the Eastern Chongming area of Shanghai from 2018 to 2020. Infect Drug Resist. 2022;15:6413–22. https://doi.org/10.2147/IDR.S384515.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tohi Y, Fujiwara K, Harada S, Matsuda I, Ito A, Yamasaki M, et al. Positive culture prior to transperineal prostate biopsy was not associated with post-biopsy febrile urinary tract infection development. Res Rep Urol. 2021;13:691–8. https://doi.org/10.2147/RRU.S333724.

Article  PubMed  PubMed Central  Google Scholar 

Tille PM. Bailey & Scott’s Diagnostic microbiology. Elsevier, St. Louis, Missouri. 2021. 9780323681056. https://evolve.elsevier.com/cs/product/9780323681056

Topić Popović N, Kazazić SP, Bojanić K, Strunjak-Perović I, Čož-Rakovac R. Sample preparation and culture condition effects on MALDI-TOF MS identification of bacteria: A review. Mass Spectrom Rev. 2023. https://doi.org/10.1002/mas.21739.

Article  PubMed 

留言 (0)

沒有登入
gif