Comparative Analysis of Cell Senescence Induced by the Chemotherapeutic Agents Doxorubicin, Cisplatin and Arsenic Trioxide in Human Myoblasts MB135

Schünemann, M., Anker, S.D., and Rauchhaus, M., Cancer fatigue syndrome reflects clinically non-overt heart failure: An approach towards onco-cardiology, Nat. Clin. Pract. Oncol., 2008, vol. 5, no. 11, pp. 632–633.

Article  PubMed  Google Scholar 

Hudson, M.M., Ness, K.K., Gurney, J.G., Mulrooney, D.A., Chemaitilly, W., Krull, K.R., Green, D.M., Armstrong, G.T., Nottage, K.A., Jones, K.E., Sklar, C.A., Srivastava, D.K., and Robison, L.L., Clinical ascertainment of health outcomes among adults treated for childhood cancer, J. Am. Med. Assoc., 2013, vol. 309, no. 22, pp. 2371–2381.

Article  CAS  Google Scholar 

Chen, M.S., Lee, R.T., and Garbern, J.C., Senescence mechanisms and targets in the heart, Cardiovasc. Res., 2022, vol. 118, no. 5, pp. 1173–1187.

Article  CAS  PubMed  Google Scholar 

Mehdizadeh, M., Aguilar, M., Thorin, E., Ferbeyre, G., and Nattel, S., The role of cellular senescence in cardiac disease: Basic biology and clinical relevance, Nat. Rev. Cardiol., 2022, vol. 19, no. 4, pp. 250–264.

Article  PubMed  Google Scholar 

Vizioli, M.G., Liu, T., Miller, K.N., Robertson, N.A., Gilroy, K., Lagnado, A.B., Perez-Garcia, A., Kiourtis, C., Dasgupta, N., Lei, X., Kruger, P.J., Nixon, C., Clark, W., Jurk, D., Bird, T.G., Passos, J.F., Berger, S.L., Dou, Z., and Adams, P.D., Mitochondria-to-nucleus retrograde signaling drives formation of cytoplasmic chromatin and inflammation in senescence, Genes Dev., 2020, vol. 34, nos. 5–6, pp. 428–445.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Singh, P., Sharma, R., McElhanon, K., Allen, C.D., Megyesi, J.K., Benes, H., and Singh, S.P., Sulforaphane protects the heart from doxorubicin-induced toxicity, Free Radic. Biol. Med., 2015, vol. 86, pp. 90–101.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hiensch, A.E., Bolam, K.A., Mijwel, S., Jeneson, J.A.L., Huitema, A.D.R., Kranenburg, O., van der Wall, E., Rundqvist, H., Wengstrom, Y., and May, A.M., Doxorubicin-induced skeletal muscle atrophy: Elucidating the underlying molecular pathways, Acta Physiol., 2020, vol. 229, no. 2, р. e13400.

Dugbartey, G.J., Peppone, L.J., and de Graaf, I.A.M., An integrative view of cisplatin-induced renal and cardiac toxicities: Molecular mechanisms, current treatment challenges and potential protective measures, Toxicology, 2016, vol. 371, pp. 58–66.

Article  CAS  PubMed  Google Scholar 

Conte, E., Bresciani, E., Rizzi, L., Cappellari, O., De Luca, A., Torsello, A., and Liantonio, A., Cisplatin-induced skeletal muscle dysfunction: Mechanisms and counteracting therapeutic strategies, Int. J. Mol. Sci., 2020, vol. 21, no. 4, p. 1242.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Andreou, C. and Matsakas, A., Current insights into cellular senescence and myotoxicity induced by doxorubicin: The role of exercise and growth factors, Int. J. Sports Med., 2022, vol. 43, no. 13, pp. 1084–1096.

Article  PubMed  Google Scholar 

Echaniz-Laguna, A., Benoilid, A., Vinzio, S., Fornecker, L.M., Lannes, B., Goullé, J.P., Broly, F., and de Camaret, B., Mitochondrial myopathy caused by arsenic trioxide therapy, Blood, 2012, vol. 119, no. 18, pp. 4272–4274.

Article  CAS  PubMed  Google Scholar 

Yen, Y.P., Tsai, K.S., Chen, Y.W., Huang, C.F., Yang, R.S., and Liu, S.H., Arsenic inhibits myogenic differentiation and muscle regeneration, Environ. Health Perspect., 2010, vol. 118, no. 7, pp. 949–956.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Piegari, E., De Angelis, A., Cappetta, D., Russo, R., Esposito, G., Costantino, S., Graiani, G., Frati, C., Prezioso, L., Berrino, L., Urbanek, K., Quaini, F., and Rossi, F., Doxorubicin induces senescence and impairs function of human cardiac progenitor cells, Basic Res. Cardiol., 2013, vol. 108, no. 2, p. 334.

Article  PubMed  Google Scholar 

Demaria, M., O’Leary, M.N., Chang, J., Shao, L., Liu, S., Alimirah, F., Koenig, K., Le, C., Mitin, N., Deal, A.M., Alston, S., Academia, E.C., Kilmarx, S., Valdovinos, A., Wang, B., de Bruin, A., Kennedy, B.K., Melov, S., Zhou, D., Sharpless, N.E., Muss, H., and Campisi, J., Cellular senescence promotes adverse effects of chemotherapy and cancer relapse, Cancer Discov., 2017, vol. 7, no. 2, pp. 165–176.

Article  CAS  PubMed  Google Scholar 

Wang, B., Kohli, J., and Demaria, M., Senescent cells in cancer therapy: Friends or foes?, Trends Cancer Res., 2020, vol. 6, no. 10, pp. 838–857.

Article  CAS  Google Scholar 

Jagannathan, S., Shadle, S.C., Resnick, R., Snider, L., Tawil, R.N., van der Maarel, S.M., Bradley, R.K., and Tapscott, S.J., Model systems of DUX4 expression recapitulate the transcriptional profile of FSHD cells, Hum. Mol. Genet., 2016, vol. 25, no. 20, pp. 4419–4431.

CAS  PubMed  PubMed Central  Google Scholar 

Malavolta, M., Giacconi, R., Piacenza, F., Strizzi, S., Cardelli, M., Bigossi, G., Marcozzi, S., Tiano, L., Marcheggiani, F., Matacchione, G., Giuliani, A., Olivieri, F., Crivellari, I., Beltrami, A.P., Serra, A., Demaria, M., and Provinciali, M., Simple detection of unstained live senescent cells with imaging flow cytometry, Cells, 2022, vol. 11, no. 16, р. 2506.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brookes, S., Gagrica, S., Sanij, E., Rowe, J., Gregory, F.J., Hara, E., and Peters, G., Evidence for a CDK4-dependent checkpoint in a conditional model of cellular senescence, Cell Cycle, 2015, vol. 14, no. 8, pp. 1164–1173.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gao, Y., Wu, T., Tang, X., Wen, J., Zhang, Y., Zhang, J., and Wang, S., Increased cellular senescence in doxorubicin-induced murine ovarian injury: Effect of senolytics, Geroscience, 2023, vol. 45, no. 3, pp. 1775–1790.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Efferth, T., Konkimalla, V.B., Wang, Y.F., Sauerbrey, A., Meinhardt, S., Zintl, F., Mattern, J., and Volm, M., Prediction of broad spectrum resistance of tumors towards anticancer drugs, Clin. Cancer Res., 2008, vol. 14, no. 8, pp. 2405–2412.

Article  CAS  PubMed  Google Scholar 

Jurisicova, A., Lee, H.J., D’Estaing, S.G., Tilly, J., and Perez, G.I., Molecular requirements for doxorubicin-mediated death in murine oocytes, Cell Death Differ., 2006, vol. 13, no. 9, pp. 1466–1474.

Article  CAS  PubMed  Google Scholar 

Morgan, S., Lopes, F., Gourley, C., Anderson, R.A., and Spears, N., Cisplatin and doxorubicin induce distinct mechanisms of ovarian follicle loss; imatinib provides selective protection only against cisplatin, PLoS One, 2013, vol. 8, no. 7, р. e70117.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Gonzalez, V.M., Fuertes, M.A., Alonso, C., and Perez, J.M., Is cisplatin-induced cell death always produced by apoptosis?, Mol. Pharmacol., 2001, vol. 59, no. 4, pp. 657–663.

Article  CAS  PubMed  Google Scholar 

Frezza, M., Hindo, S., Chen, D., Davenport, A., Schmitt, S., Tomco, D., and Dou, Q.P., Novel metals and metal complexes as platforms for cancer therapy, Curr. Pharm. Des., 2010, vol. 16, no. 16, pp. 1813–1825.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Matsumoto, C., Sekine, H., Zhang, N., Mogami, S., Fujitsuka, N., and Takeda, H., Role of p53 in cisplatin-induced myotube atrophy, Int. J. Mol. Sci., 2023, vol. 24, no. 11, р. 9176.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou, L., Lu, R., Huang, C., and Lin, D., Taurine protects C2C12 myoblasts from impaired cell proliferation and myotube differentiation under cisplatin-induced ROS exposure, Front. Mol. Biosci., 2021, vol. 8, р. 685362.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dawood, M., Hamdoun, S., and Efferth, T., Multifactorial modes of action of arsenic trioxide in cancer cells as analyzed by classical and network pharmacology, Front. Pharmacol., 2018, vol. 9, р. 143.

Article  PubMed  PubMed Central  Google Scholar 

Sugihara, H., Teramoto, N., Yamanouchi, K., Matsuwaki, T., and Nishihara, M., Oxidative stress-mediated senescence in mesenchymal progenitor cells causes the loss of their fibro/adipogenic potential and abrogates myoblast fusion, Aging, 2018, vol. 10, no. 4, pp. 747–763.

Article  CAS  PubMed  PubMed Central  Google Scholar 

He, Y., Xie, W., Li, H., Jin, H., Zhang, Y., and Li, Y., Cellular senescence in sarcopenia: Possible mechanisms and therapeutic potential, Front. Cell Dev. Biol., 2021, vol. 9, р. 793088.

Article  PubMed  Google Scholar 

Campisi, J., Senescent cells, tumor suppression, and organismal aging: Good citizens, bad neighbors, Cell, 2005, vol. 120, no. 4, pp. 513–522.

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif