Selenium chemistry for spatio-selective peptide and protein functionalization

Hoyt, E. A., Cal, P. M. S. D., Oliveira, B. L. & Bernardes, G. J. L. Contemporary approaches to site-selective protein modification. Nat. Rev. Chem. 3, 147–171 (2019).

Article  CAS  Google Scholar 

Shiraiwa, K., Cheng, R., Nonaka, H., Tamura, T. & Hamachi, I. Chemical tools for endogenous protein labeling and profiling. Cell Chem. Biol. 27, 970–985 (2020).

Article  CAS  PubMed  Google Scholar 

Kang, M. S., Kong, T. W. S., Khoo, J. Y. X. & Loh, T.-P. Recent developments in chemical conjugation strategies targeting native amino acids in proteins and their applications in antibody–drug conjugates. Chem. Sci. 12, 13613–13647 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu, Y. et al. Development and application of novel electrophilic warheads in target identification and drug discovery. Biochem. Pharmacol. 190, 114636 (2021).

Article  CAS  PubMed  Google Scholar 

Tan, Y., Wu, H., Wei, T. & Li, X. Chemical protein synthesis: advances, challenges, and outlooks. J. Am. Chem. Soc. 142, 20288–20298 (2020).

Article  CAS  Google Scholar 

Adakkattil, R., Thakur, K. & Rai, V. Reactivity and selectivity principles in native protein bioconjugation. Chem. Rec. 21, 1941–1956 (2021).

Article  CAS  PubMed  Google Scholar 

Tamura, T. & Hamachi, I. Chemistry for covalent modification of endogenous/native proteins: from test tubes to complex biological systems. J. Am. Chem. Soc. 141, 2782–2799 (2019).

Article  CAS  PubMed  Google Scholar 

Lindstedt, P. R., Taylor, R. J., Bernardes, G. J. L. & Vendruscolo, M. Facile installation of post-translational modifications on the tau protein via chemical mutagenesis. ACS Chem. Neurosci. 12, 557–561 (2021).

Article  CAS  PubMed  Google Scholar 

Wright, T. H. et al. Posttranslational mutagenesis: a chemical strategy for exploring protein side-chain diversity. Science 354, agg1465 (2016).

Article  Google Scholar 

Jbara, M., Maity, S. K. & Brik, A. Palladium in the chemical synthesis and modification of proteins. Angew. Chem. Int. Ed. 56, 10644–10655 (2017).

Article  CAS  Google Scholar 

Tang, W. & Becker, M. L. “Click” reactions: a versatile toolbox for the synthesis of peptide-conjugates. Chem. Soc. Rev. 43, 7013–7039 (2014).

Article  CAS  PubMed  Google Scholar 

Afonso, C. F. et al. Cysteine-assisted click-chemistry for proximity-driven, site-specific acetylation of histones. Angew. Chem. Int. Ed. 61, e202208543 (2022).

Article  CAS  Google Scholar 

Boutureira, O. & Bernardes, G. J. L. Advances in chemical protein modification. Chem. Rev. 115, 2174–2195 (2015).

Article  CAS  PubMed  Google Scholar 

Krall, N., da Cruz, F. P., Boutureira, O. & Bernardes, G. J. L. Site-selective protein-modification chemistry for basic biology and drug development. Nat. Chem. 8, 103–113 (2016).

Article  CAS  PubMed  Google Scholar 

Mousa, R., Notis Dardashti, R. & Metanis, N. Selenium and selenocysteine in protein chemistry. Angew. Chem. Int. Ed. 56, 15818–15827 (2017).

Article  CAS  Google Scholar 

Rayman, M. P. Selenium intake, status, and health: a complex relationship. Hormones 19, 9–14 (2020).

Article  PubMed  Google Scholar 

Kryukov, G. V. et al. Characterization of mammalian selenoproteomes. Science 300, 1439–1443 (2003).

Article  ADS  CAS  PubMed  Google Scholar 

Maroney, M. J. & Hondal, R. J. Selenium versus sulfur: reversibility of chemical reactions and resistance to permanent oxidation in proteins and nucleic acids. Free Radic. Biol. Med. 127, 228–237 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Reich, H. J. & Hondal, R. J. Why nature chose selenium. ACS Chem. Biol. 11, 821–841 (2016).

Article  CAS  PubMed  Google Scholar 

Stadtman, T. C. Selenocysteine. Annu. Rev. Biochem. 65, 83–100 (1996). This paper is an important review discussing biosynthesis and specific insertion of Sec as the 21st encoded amino acid in proteins and the relative catalytic activities of Cys-containing versus Sec-containing enzymes.

Article  CAS  PubMed  Google Scholar 

Mousa, R., Reddy, P. S. & Metanis, N. Chemical protein synthesis through selenocysteine chemistry. Synlett 28, 1389–1393 (2017).

Article  CAS  Google Scholar 

Metanis, N. & Hilvert, D. Natural and synthetic selenoproteins. Curr. Opin. Chem. Biol. 22, 27–34 (2014).

Article  CAS  PubMed  Google Scholar 

Kulkarni, S. S., Sayers, J., Premdjee, B. & Payne, R. J. Rapid and efficient protein synthesis through expansion of the native chemical ligation concept. Nat. Rev. Chem. 2, 0122 (2018).

Article  CAS  Google Scholar 

Pehlivan, Ö., Waliczek, M., Kijewska, M. & Stefanowicz, P. Selenium in peptide chemistry. Molecules 28, 3198 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Maeda, H., Katayama, K., Matsuno, H. & Uno, T. 3′-(2,4-Dinitrobenzenesulfonyl)-2′,7′-dimethylfluorescein as a fluorescent probe for selenols. Angew. Chem. Int. Ed. 45, 1810–1813 (2006).

Article  CAS  Google Scholar 

Zhang, B. et al. Selective selenol fluorescent probes: design, synthesis, structural determinants, and biological applications. J. Am. Chem. Soc. 137, 757–769 (2015).

Article  CAS  PubMed  Google Scholar 

Eaton, J. K. et al. Selective covalent targeting of GPX4 using masked nitrile-oxide electrophiles. Nat. Chem. Biol. 16, 497–506 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Eaton, J. K., Ruberto, R. A., Kramm, A., Viswanathan, V. S. & Schreiber, S. L. Diacylfuroxans are masked nitrile oxides that inhibit GPX4 covalently. J. Am. Chem. Soc. 141, 20407–20415 (2019).

Article  CAS  PubMed  Google Scholar 

Bernardim, B. et al. Efficient and irreversible antibody–cysteine bioconjugation using carbonylacrylic reagents. Nat. Protoc. 14, 86–99 (2019).

Article  CAS  PubMed  Google Scholar 

Akkapeddi, P. et al. A fully human anti-IL-7Rα antibody promotes antitumor activity against T-cell acute lymphoblastic leukemia. Leukemia 33, 2155–2168 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ferhati, X. et al. Single mutation on trastuzumab modulates the stability of antibody–drug conjugates built using acetal-based linkers and thiol-maleimide chemistry. J. Am. Chem. Soc. 144, 5284–5294 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Taylor, R. J. et al. π-Clamp-mediated homo- and heterodimerization of single-domain antibodies via site-specific homobifunctional conjugation. J. Am. Chem. Soc. 144, 13026–13031 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hofer, T., Thomas, J. D., Burke, T. R. Jr & Rader, C. An engineered selenocysteine defines a unique class of antibody derivatives. Proc. Natl Acad. Sci. USA 105, 12451–12456 (2008).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Walsh, S. J. et al. Site-selective modification strategies in antibody–drug conjugates. Chem. Soc. Rev. 50, 1305–1353 (2021).

Article  CAS  PubMed  Google Scholar 

Patterson, J. T., Asano, S., Li, X., Rader, C. & Barbas, C. F. III Improving the serum stability of site-specific antibody conjugates with sulfone linkers. Bioconjug. Chem. 25, 1402–1407 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pedzisa, L., Li, X., Rader, C. & Roush, W. R. Assessment of reagents for selenocysteine conjugation and the stability of selenocysteine adducts. Org. Biomol. Chem. 14, 5141–5147 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, X. et al. Stable and potent selenomab-drug conjugates. Cell Chem. Biol. 24, 433–442.e6 (2017).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Siemion, I. Z. Compositional frequencies of amino acids in the proteins and the genetic code. Biosystems 32, 163–170 (1994).

留言 (0)

沒有登入
gif