Electrochemical hydrogenation and oxidation of organic species involving water

Zhang, L., Zhou, M., Wang, A. & Zhang, T. Selective hydrogenation over supported metal catalysts: from nanoparticles to single atoms. Chem. Rev. 120, 683–733 (2020).

Article  CAS  PubMed  Google Scholar 

Caron, S., Dugger, R. W., Ruggeri, S. G., Ragan, J. A. & Ripin, D. H. B. Large-scale oxidations in the pharmaceutical industry. Chem. Rev. 106, 2943–2989 (2006).

Article  CAS  PubMed  Google Scholar 

Studt, F. et al. Identification of non-precious metal alloy catalysts for selective hydrogenation of acetylene. Science 320, 1320–1322 (2008).

Article  CAS  PubMed  Google Scholar 

Wang, D., Weinstein, A. B., White, P. B. & Stahl, S. S. Ligand-promoted palladium-catalyzed aerobic oxidation reactions. Chem. Rev. 118, 2636–2679 (2018).

Article  CAS  PubMed  Google Scholar 

Zhang, H., Sun, Z. & Hu, Y. H. Steam reforming of methane: current states of catalyst design and process upgrading. Renew. Sustain. Energy Rev. 149, 111330 (2021).

Article  CAS  Google Scholar 

Hashim, S. S., Mohamed, A. R. & Bhatia, S. Oxygen separation from air using ceramic-based membrane technology for sustainable fuel production and power generation. Renew. Sustain. Energy Rev. 15, 1284–1293 (2011).

Article  CAS  Google Scholar 

Pang, M. et al. Controlled partial transfer hydrogenation of quinolines by cobalt-amido cooperative catalysis. Nat. Commun. 11, 1249 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gunanathan, C. & Milstein, D. Applications of acceptorless dehydrogenation and related transformations in chemical synthesis. Science 341, 1229712 (2013).

Article  PubMed  Google Scholar 

Bryliakov, K. P. Catalytic asymmetric oxygenations with the environmentally benign oxidants H2O2 and O2. Chem. Rev. 117, 11406–11459 (2017).

Article  CAS  PubMed  Google Scholar 

Ghavtadze, N., Melkonyan, F. S., Gulevich, A. V., Huang, C. & Gevorgyan, V. Conversion of 1-alkenes into 1,4-diols through an auxiliary-mediated formal homoallylic C–H oxidation. Nat. Chem. 6, 122–125 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yan, M., Kawamata, Y. & Baran, P. S. Synthetic organic electrochemical methods since 2000: on the verge of a renaissance. Chem. Rev. 117, 13230–13319 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wiebe, A. et al. Electrifying organic synthesis. Angew. Chem. Int. Ed. 57, 5594–5619 (2018).

Article  CAS  Google Scholar 

Münchow, T., Dana, S., Xu, Y., Yuan, B. & Ackermann, L. Enantioselective electrochemical cobalt-catalyzed aryl C–H activation reactions. Science 379, 1036–1042 (2023).

Article  Google Scholar 

Li, J., Zhang, Y., Kuruvinashetti, K. & Kornienko, N. Construction of C–N bonds from small-molecule precursors through heterogeneous electrocatalysis. Nat. Rev. Chem. 6, 303–319 (2022).

Article  CAS  PubMed  Google Scholar 

Tang, C., Zheng, Y., Jaroniec, M. & Qiao, S.-Z. Electrocatalytic refinery for sustainable production of fuels and chemicals. Angew. Chem. Int. Ed. 60, 19572–19590 (2021).

Article  CAS  Google Scholar 

Li, Y. et al. Recent progress in synergistic electrocatalysis for generation of valuable products based on water cycle. Nano Res. 16, 6444–6476 (2023).

Article  Google Scholar 

Campbell, K. N. & Young, E. E. The addition of hydrogen to multiple carbon–carbon bonds. IV. The electrolytic reduction of alkyl and aryl acetylenes. J. Am. Chem. Soc. 65, 965–967 (1943).

Article  CAS  Google Scholar 

Schlesinger, H. I. & Burg, A. B. Recent developments in the chemistry of the boron hydrides. Chem. Rev. 31, 1–41 (1942).

Article  CAS  Google Scholar 

Harnisch, F. & Morejón, M. C. Hydrogen from water is more than a fuel: hydrogenations and hydrodeoxygenations for a biobased economy. Chem. Rec. 21, 2277–228 (2021).

Article  CAS  PubMed  Google Scholar 

Xu, Y. & Zhang, B. Recent advances in electrochemical hydrogen production from water assisted by alternative oxidation reactions. ChemElectroChem 6, 3214–3226 (2019).

Article  CAS  Google Scholar 

Fuchigami, T., Inagi, S. & Atobe, M. Fundamentals and Applications of Organic Electrochemistry 1st edn (Wiley, 2015).

Jiang, J., Wu, B. & Cha, C. Electrosynthesis of p-methoxybenzaldehyde on graphite/Nafion membrane composite electrodes. Electrochim. Acta 43, 2549 (1998).

Article  CAS  Google Scholar 

Zhang, P. & Sun, L. Electrocatalytic hydrogenation and oxidation in aqueous conditions. Chin. J. Chem. 38, 996–1004 (2020).

Article  CAS  Google Scholar 

Liu, C., Wu, Y., Zhao, B. & Zhang, B. Designed nanomaterials for electrocatalytic organic hydrogenation using water as the hydrogen source. Acc. Chem. Res. 56, 1872–1883 (2023).

Article  CAS  PubMed  Google Scholar 

Sun, H., Ou, W., Sun, L., Wang, B. & Su, C. Recent advances in nature-inspired nanocatalytic reduction of organic molecules with water. Nano Res. 15, 10292–10315 (2022).

Article  CAS  Google Scholar 

Akhade, S. A. et al. Electrocatalytic hydrogenation of biomass-derived organics: a review. Chem. Rev. 120, 11370–11419 (2020).

Article  CAS  PubMed  Google Scholar 

Chen, G., Li, X. & Feng, X. Upgrading organic compounds through the coupling of electrooxidation with hydrogen evolution. Angew. Chem. Int. Ed. 61, e202209014 (2022).

Article  CAS  Google Scholar 

Heard, D. M. & Lennox, A. J. J. Electrode materials in modern organic electrochemistry. Angew. Chem. Int. Ed. 59, 18866–18884 (2020).

Article  CAS  Google Scholar 

Asefa, T. Metal-free and noble metal-free heteroatom-doped nanostructured carbons as prospective sustainable electrocatalysts. Acc. Chem. Res. 49, 1873–1883 (2016).

Article  CAS  PubMed  Google Scholar 

Zhao, B.-H. et al. Economically viable electrocatalytic ethylene production with high yield and selectivity. Nat. Sustain. 6, 827–837 (2023).

Article  Google Scholar 

Leow, W. R. et al. Chloride-mediated selective electrosynthesis of ethylene and propylene oxides at high current density. Science 368, 1228–1233 (2020).

Article  CAS  PubMed  Google Scholar 

Inoue, H., Abe, T. & Iwakura, C. Successive hydrogenation of styrene at a palladium sheet electrode combined with electrochemical supply of hydrogen. Chem. Commun. https://doi.org/10.1039/CC9960000055 (1996).

Sherbo, R. S., Delima, R. S., Chiykowski, V. A., MacLeod, B. P. & Berlinguette, C. P. Complete electron economy by pairing electrolysis with hydrogenation. Nat. Catal. 1, 501–507 (2018).

Article  CAS  Google Scholar 

Sherbo, R. S., Kurimoto, A., Brown, C. M. & Berlinguette, C. P. Efficient electrocatalytic hydrogenation with a palladium membrane reactor. J. Am. Chem. Soc. 141, 7815–7821 (2019).

Article  CAS  PubMed  Google Scholar 

Sato, T., Sato, S. & Itoh, N. Using a hydrogen-permeable palladium membrane electrode to produce hydrogen from water and hydrogenate toluene. Int. J. Hydrog. Energy 41, 5419e5427 (2016).

Article  Google Scholar 

Han, G., Li, G. & Sun, Y. Electrocatalytic dual hydrogenation of organic substrates with a faradaic efficiency approaching 200%. Nat. Catal. 6, 224–233 (2023).

Article  CAS  Google Scholar 

Yan, Y.-Q. et al. Electrochemistry-assisted selective butadiene hydrogenation with water. Nat. Commun. 14, 2106 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu, Y. et al. Electrochemical hydrogenation of oxidized contaminants for water purification without supporting electrolyte. Nat. Water 1, 95–103 (2023).

Article  Google Scholar 

Zhang, Y. & Kornienko, N. C≡N triple bond cleavage via trans-membrane hydrogenation. Chem. Catal. 2, 499–507 (2022).

Article  CAS  Google Scholar 

Kurimoto, A., Sherbo, R. S., Cao, Y., Loo, N. W. X. & Berlinguette, C. P. Electrolytic deuteration of unsaturated bonds without using D2. Nat. Catal. 3, 719–726 (2020).

Article  CAS  Google Scholar 

Kurimoto, A. et al. Bioelectrocatalysis with a palladium membrane reactor. Nat. Commun. 14, 1814 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kurimoto, A. et al. Physical separation of H2 activation from hydrogenation chemistry reveals the specific role of secondary metal catalysts. Angew. Chem. Int. Ed. 60, 11937–11942 (2021).

Article  CAS  Google Scholar 

Conde, J. J., Maroño, M. & Sánchez-Hervás, J. M. Pd-based membranes for hydrogen separation: review of alloying elements and their influence on membrane properties. Sep. Purif. Rev. 46, 152–177 (2017).

Article 

留言 (0)

沒有登入
gif