Seeking a quantum advantage with trapped-ion quantum simulations of condensed-phase chemical dynamics

Park, J. W., Al-Saadon, R., MacLeod, M. K., Shiozaki, T. & Vlaisavljevich, B. Multireference electron correlation methods: journeys along potential energy surfaces. Chem. Rev. 120, 5878–5909 (2020).

Article  CAS  PubMed  Google Scholar 

Park, J. W. & Shiozaki, T. On-the-fly CASPT2 surface-hopping dynamics. J. Chem. Theory Comput. 13, 3676–3683 (2017).

Article  CAS  PubMed  Google Scholar 

Larsson, H. R., Zhai, H., Umrigar, C. J. & Chan, G. K.-L. The chromium dimer: closing a chapter of quantum chemistry. J. Am. Chem. Soc. 144, 15932–15937 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cirac, J. I. & Zoller, P. Goals and opportunities in quantum simulation. Nat. Phys. 8, 264–266 (2012).

Article  CAS  Google Scholar 

Georgescu, I. M., Ashhab, S. & Nori, F. Quantum simulation. Rev. Mod. Phys. 86, 153 (2014).

Article  Google Scholar 

Daley, A. J. et al. Practical quantum advantage in quantum simulation. Nature 607, 667–676 (2022).

Article  CAS  PubMed  Google Scholar 

Alexeev, Y. et al. Quantum computer systems for scientific discovery. PRX Quantum 2, 017001 (2021).

Article  Google Scholar 

Lee, S. et al. Evaluating the evidence for exponential quantum advantage in ground-state quantum chemistry. Nat. Commun. 14, 1952 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kassal, I., Jordan, S. P., Love, P. J., Mohseni, M. & Aspuru-Guzik, A. Polynomial-time quantum algorithm for the simulation of chemical dynamics. Proc. Natl Acad. Sci. USA 105, 18681–18686 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sawaya, N. P. D. et al. Resource-efficient digital quantum simulation of d-level systems for photonic, vibrational, and spin-s Hamiltonians. npj Quantum Inf. 6, 49 (2020).

Article  Google Scholar 

Jahangiri, S., Arrazola, J. M., Quesada, N. & Delgado, A. Quantum algorithm for simulating molecular vibrational excitations. Phys. Chem. Chem. Phys. 22, 25528–25537 (2020).

Article  CAS  PubMed  Google Scholar 

MacDonell, R. J. et al. Analog quantum simulation of chemical dynamics. Chem. Sci. 12, 9794–9805 (2021). This article suggests performing analog quantum simulation of chemical dynamics using quantum architectures consisting of qudits and bosonic oscillators, such as ion traps and circuit quantum electrodynamics.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Saha, D., Iyengar, S. S., Richerme, P., Smith, J. M. & Sabry, A. Mapping quantum chemical dynamics problems to spin-lattice simulators. J. Chem. Theory Comput. 17, 6713–6732 (2021).

Article  CAS  PubMed  Google Scholar 

Kitaev, A. Y. Quantum measurements and the Abelian Stabilizer Problem. Preprint at arXiv arxiv.org/abs/quant-ph/9511026 (1996).

Aspuru-Guzik, A., Dutoi, A. D., Love, P. J. & Head-Gordon, M. Simulated quantum computation of molecular energies. Science 309, 1704–1707 (2005).

Article  CAS  PubMed  Google Scholar 

Lanyon, B. P. et al. Towards quantum chemistry on a quantum computer. Nat. Chem. 2, 106–111 (2010).

Article  CAS  PubMed  Google Scholar 

Whitfield, J. D., Biamonte, J. & Aspuru-Guzik, A. Simulation of electronic structure Hamiltonians using quantum computers. Mol. Phys. 109, 735–750 (2011).

Article  CAS  Google Scholar 

Peruzzo, A. et al. A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5, 4213 (2014).

Article  CAS  PubMed  Google Scholar 

O’Malley, P. J. et al. Scalable quantum simulation of molecular energies. Phys. Rev. X 6, 031007 (2016).

Google Scholar 

Kandala, A. et al. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 549, 242–246 (2017).

Article  CAS  PubMed  Google Scholar 

Nam, Y. et al. Ground-state energy estimation of the water molecule on a trapped-ion quantum computer. npj Quantum Inf. 6, 33 (2020).

Article  Google Scholar 

Wang, L., Allodi, M. A. & Engel, G. S. Quantum coherences reveal excited-state dynamics in biophysical systems. Nat. Rev. Chem. 3, 477–490 (2019).

Article  Google Scholar 

Cao, J. et al. Quantum biology revisited. Sci. Adv. 6, eaaz4888 (2020). This review discusses the possible presence and role of coherent oscillations in biological light harvesting that involve both electronic and vibrational degrees of freedom.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hammes-Schiffer, S. & Soudackov, A. V. Proton-coupled electron transfer in solution, proteins, and electrochemistry. J. Phys. Chem. B 112, 14108–14123 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hammes-Schiffer, S. Proton-coupled electron transfer: moving together and charging forward. J. Am. Chem. Soc. 137, 8860–8871 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Reiher, M., Wiebe, N., Svore, K. M., Wecker, D. & Troyer, M. Elucidating reaction mechanisms on quantum computers. Proc. Natl Acad. Sci. USA 114, 7555–7560 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Babbush, R. et al. Encoding electronic spectra in quantum circuits with linear T complexity. Phys. Rev. X 8, 041015 (2018).

CAS  Google Scholar 

Su, Y., Berry, D. W., Wiebe, N., Rubin, N. & Babbush, R. Fault-tolerant quantum simulations of chemistry in first quantization. PRX Quantum 2, 040332 (2021).

Article  Google Scholar 

Kim, I. H. et al. Fault-tolerant resource estimate for quantum chemical simulations: case study on Li-ion battery electrolyte molecules. Phys. Rev. Res. 4, 023019 (2022).

Article  CAS  Google Scholar 

Houck, A. A., Türeci, H. E. & Koch, J. On-chip quantum simulation with superconducting circuits. Nat. Phys. 8, 292–299 (2012).

Article  CAS  Google Scholar 

Hartmann, M. J. Quantum simulation with interacting photons. J. Opt. 18, 104005 (2016).

Article  Google Scholar 

Greiner, M., Mandel, O., Esslinger, T., Hänsch, T. W. & Bloch, I. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39–44 (2002).

Article  CAS  PubMed  Google Scholar 

Gross, C. & Bloch, I. Quantum simulations with ultracold atoms in optical lattices. Science 357, 995–1001 (2017).

Article  CAS  PubMed  Google Scholar 

Aspuru-Guzik, A. & Walther, P. Photonic quantum simulators. Nat. Phys. 8, 285–291 (2012).

Article  CAS  Google Scholar 

Blatt, R. & Roos, C. F. Quantum simulations with trapped ions. Nat. Phys. 8, 277–284 (2012).

Article  CAS  Google Scholar 

Monroe, C. et al. Programmable quantum simulations of spin systems with trapped ions. Rev. Mod. Phys. 93, 025001 (2021).

Article  CAS  Google Scholar 

Brown, K. R., Kim, J. & Monroe, C. Co-designing a scalable quantum computer with trapped atomic ions. npj Quantum Inf. 2, 16034 (2016).

Article  Google Scholar 

Bruzewicz, C. D., Chiaverini, J., McConnell, R. & Sage, J. M. Trapped-ion quantum computing: progress and challenges. Appl. Phys. Rev. 6, 021314 (2019).

Article  Google Scholar 

Kienzler, D. et al. Observation of quantum interference between separated mechanical oscillator wave packets. Phys. Rev. Lett. 116, 140402 (2016).

Article  CAS  PubMed  Google Scholar 

Um, M. et al. Phonon arithmetic in a trapped ion system. Nat. Commun. 7, 11410 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang, J. et al. NOON states of nine quantized vibrations in two radial modes of a trapped ion. Phys. Rev. Lett. 121, 160502 (2018).

Article  CAS  PubMed  Google Scholar 

Flühmann, C. et al. Encoding a qubit in a trapped-ion mechanical oscillator. Nature 566, 513–517 (2019).

Article  PubMed  Google Scholar 

de Neeve, B., Nguyen, T.-L., Behrle, T. & Home, J. P. Error correction of a logical grid state qubit by dissipative pumping. Nat. Phys. 18, 296–300 (2022).

Article  Google Scholar 

Jia, Z. et al. Determination of multimode motional quantum states in a trapped ion system. Phys. Rev. Lett. 129, 103602 (2022).

留言 (0)

沒有登入
gif