Halogen-powered static conversion chemistry

Armand, M. & Tarascon, J. M. Building better batteries. Nature 451, 652–657 (2008).

Article  CAS  PubMed  Google Scholar 

Simon, P. & Gogotsi, Y. Perspectives for electrochemical capacitors and related devices. Nat. Mater. 19, 1151–1163 (2020).

Article  CAS  PubMed  Google Scholar 

Xu, K. Li-ion battery electrolytes. Nat. Energy 6, 763 (2021).

Article  CAS  Google Scholar 

Sun, Y. M., Liu, N. A. & Cui, Y. Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nat. Energy 1, 16071 (2016).

Article  CAS  Google Scholar 

Liu, K., Liu, Y., Lin, D., Pei, A. & Cui, Y. Materials for lithium-ion battery safety. Sci. Adv. 4, eaas9820 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Nitta, N., Wu, F. X., Lee, J. T. & Yushin, G. Li-ion battery materials: present and future. Mater. Today 18, 252–264 (2015).

Article  CAS  Google Scholar 

Jiao, S. H. et al. Stable cycling of high-voltage lithium metal batteries in ether electrolytes. Nat. Energy 3, 739–746 (2018).

Article  CAS  Google Scholar 

Duffner, F. et al. Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure. Nat. Energy 6, 123–134 (2021).

Article  CAS  Google Scholar 

Cui, J., Zheng, H. & He, K. J. A. M. In situ TEM study on conversion‐type electrodes for rechargeable ion batteries. Adv. Mater. 33, 2000699 (2021).

Article  CAS  Google Scholar 

Dai, C. et al. Enabling fast-charging selenium-based aqueous batteries via conversion reaction with copper ions. Nat. Commun. 13, 1863 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wei, S. et al. A stable room-temperature sodium–sulfur battery. Nat. Commun. 7, 11722 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou, J. W., Liu, Y., Zhang, S. L., Zhou, T. F. & Guo, Z. P. Metal chalcogenides for potassium storage. InfoMat 2, 437–465 (2020).

Article  CAS  Google Scholar 

Geels, F. W., Sovacool, B. K., Schwanen, T. & Sorrell, S. The socio-technical dynamics of low-carbon transitions. Joule 1, 463–479 (2017).

Article  Google Scholar 

Liang, G., Mo, F., Ji, X. & Zhi, C. Non-metallic charge carriers for aqueous batteries. Nat. Rev. Mater. 6, 109–123 (2021). A comprehensive review of the regulation of electrolytes and anion chemistry.

Article  CAS  Google Scholar 

Zhao, X., Zhao-Karger, Z., Fichtner, M. & Shen, X. Halide-based materials and chemistry for rechargeable batteries. Angew. Chem. Int. Ed. 59, 5902–5949 (2020).

Article  CAS  Google Scholar 

She, L. et al. Rechargeable aqueous zinc–halogen batteries: fundamental mechanisms, research issues, and future perspectives. Adv. Sci. 11, 2305061 (2024).

Article  CAS  Google Scholar 

Birk, J. Development of the Zinc–Chlorine Battery for Utility Applications. Interim report, January 1, 1977–March 31, 1978. [100-MWh plant with 45-kWh modules] (Energy Development Associates, 1979).

Xue, Z. Y., Gao, Z. Y. & Zhao, X. Y. Halogen storage electrode materials for rechargeable batteries. Energy Environ. Mater. 5, 1155–1179 (2022).

Article  CAS  Google Scholar 

Gutmann, F., Hermann, A. & Rembaum, A. Solid‐state electrochemical cells based on charge transfer complexes. J. Electrochem. Soc. 114, 323 (1967).

Article  CAS  Google Scholar 

Zhao, Y., Wang, L. & Byon, H. R. High-performance rechargeable lithium-iodine batteries using triiodide/iodide redox couples in an aqueous cathode. Nat. Commun. 4, 1896 (2013).

Article  PubMed  Google Scholar 

Yang, C. et al. Aqueous Li-ion battery enabled by halogen conversion–intercalation chemistry in graphite. Nature 569, 245–250 (2019). This is the first study demonstrating the intercalation and co-conversion chemistry of Br–Cl in interhalogen mode with ‘water-in-salt’ electrolytes.

Article  CAS  PubMed  Google Scholar 

Zhu, G. et al. Rechargeable Na/Cl2 and Li/Cl2 batteries. Nature 596, 525–530 (2021). This is the first study demonstrating the rechargeable Li-SOCl2battery operating via redox between mainly Cl2and Cl.

Article  CAS  PubMed  Google Scholar 

Zou, Y. et al. A four-electron Zn-I2 aqueous battery enabled by reversible I−/I2/I+ conversion. Nat. Commun. 12, 170 (2021). This is the first study demonstrating the two-electron transfer chemistry of zinc-iodine batteries in aqueous/organic hybrid electrolytes.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, X. et al. Two-electron redox chemistry enabled high-performance iodide-ion conversion battery. Angew. Chem. Int. Ed. 61, e202113576 (2022).

Article  CAS  Google Scholar 

Ma, W. et al. A twelve-electron conversion iodine cathode enabled by interhalogen chemistry in aqueous solution. Nat. Commun. 14, 5508 (2023). This paper realizes the multi-electron transfer mode in hetero-halogen electrolytes with a I/IO3redox couple.

Article  CAS  PubMed  PubMed Central  Google Scholar 

He, B. et al. Halogen chemistry of solid electrolytes in all-solid-state batteries. Nat. Rev. Chem. 7, 826–842 (2023). This paper comprehensively summarizes halogen-based solid-state electrolytes.

PubMed  Google Scholar 

Schwerdtfeger, P., Smits, O. R. & Pyykko, P. The periodic table and the physics that drives it. Nat. Rev. Chem. 4, 359–380 (2020).

Article  CAS  PubMed  Google Scholar 

Politzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. An overview of halogen bonding. J. Mol. Model. 13, 305–311 (2007).

Article  CAS  PubMed  Google Scholar 

Kirk, K. L. in Biochemistry of the Elemental Halogens Inorganic Halides (ed. Kirk, K. L.) 1–17 (Springer, 1991).

Tang, X., Fan, T., Wang, C. & Zhang, H. Halogen functionalization in the 2D material flatland: strategies, properties, and applications. Small 17, e2005640 (2021).

Article  PubMed  Google Scholar 

Solel, E., Ruth, M. & Schreiner, P. R. London dispersion helps refine steric A-values: the halogens. J. Org. Chem. 86, 7701–7713 (2021).

Article  CAS  PubMed  Google Scholar 

Pennington, W. T., Hanks, T. W. & Arman, H. D. in Halogen Bonding. Structure and Bonding (eds Metrangolo, P. & Resnati, G.) 65–104 (Springer, 2007).

Zhou, F. et al. A new type of halogen bond involving multivalent astatine: an ab initio study. Phys. Chem. Chem. Phys. 21, 15310–15318 (2019).

Article  CAS  PubMed  Google Scholar 

Ji, X. A perspective of ZnCl2 electrolytes: the physical and electrochemical properties. eScience 1, 99–107 (2021).

Article  Google Scholar 

Guo, Q. et al. Reversible insertion of I–Cl interhalogen in a graphite cathode for aqueous dual-ion batteries. ACS Energy Lett. 6, 459–467 (2021).

Article  CAS  Google Scholar 

Chun, S. E. et al. Design of aqueous redox-enhanced electrochemical capacitors with high specific energies and slow self-discharge. Nat. Commun. 6, 7818 (2015).

Article  CAS  PubMed  Google Scholar 

Zhao, Y. et al. A chemistry and material perspective on lithium redox flow batteries towards high-density electrical energy storage. Chem. Soc. Rev. 44, 7968–7996 (2015).

Article  CAS  PubMed  Google Scholar 

Boettcher, S. W. et al. Potentially confusing: potentials in electrochemistry. ACS Energy Lett. 6, 261–266 (2021).

Article  CAS  Google Scholar 

Zhang, J. et al. An all-aqueous redox flow battery with unprecedented energy density. Energy Environ. Sci. 11, 2010–2015 (2018).

Article  CAS  Google Scholar 

Liu, Z. et al. Voltage issue of aqueous rechargeable metal-ion batteries. Chem. Soc. Rev. 49, 180–232 (2020).

Article  CAS  PubMed  Google Scholar 

Fan, X. & Wang, C. High-voltage liquid electrolytes for Li batteries: progress and perspectives. Chem. Soc. Rev. 50, 10486–10566 (2021).

Article  CAS  PubMed  Google Scholar 

Wang, Z., Meng, X., Chen, K. & Mitra, S. High capacity aqueous periodate batteries featuring a nine-electron transfer process. Energy Storage Mater. 19, 206–211 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Zhang, K. & Jin, Z. Halogen-enabled rechargeable batteries: current advances and future perspectives. Energy Storage Mater. 45, 332–369 (2022).

Article  Google Scholar 

Lu, K. et al. A rechargeable iodine-carbon battery that exploits ion intercalation and iodine redox chemistry. Nat. Commun. 8, 527 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Qian, M. et al. Realizing few-layer iodinene for high-rate sodium-ion batteries. Adv. Mater. 32, e2004835 (2020).

留言 (0)

沒有登入
gif