Interferon-stimulated gene PVRL4 broadly suppresses viral entry by inhibiting viral-cellular membrane fusion

Nachbagauer R, Palese P. Is a Universal Influenza Virus vaccine possible? Annu Rev Med. 2020;71:315–27.

Article  CAS  PubMed  Google Scholar 

Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel coronavirus from patients with Pneumonia in China, 2019. N Engl J Med. 2020;382(8):727–33.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal origin of SARS-CoV-2. Nat Med. 2020;26(4):450–2.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schneider WM, Chevillotte MD, Rice CM. Interferon-stimulated genes: a complex web of host defenses. Annu Rev Immunol. 2014;32:513–45.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Parvez MK, Parveen S. Evolution and emergence of pathogenic viruses: past, Present, and Future. Intervirology. 2017;60(1–2):1–7.

Article  PubMed  Google Scholar 

Dimitrov DS. Virus entry: molecular mechanisms and biomedical applications. Nat Rev Microbiol. 2004;2(2):109–22.

Article  PubMed  PubMed Central  Google Scholar 

McNab F, Mayer-Barber K, Sher A, Wack A, O’Garra A. Type I interferons in infectious disease. Nat Rev Immunol. 2015;15(2).

Ivashkiv LB, Donlin LT. Regulation of type I interferon responses. Nat Rev Immunol. 2014;14(1):36–49.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lazear HM, Schoggins JW, Diamond MS. Shared and distinct functions of type I and type III interferons. Immunity. 2019;50(4):907–23.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stetson DB, Medzhitov R. Type I interferons in host defense. Immunity. 2006;25(3):373–81.

Article  CAS  PubMed  Google Scholar 

Samuel CE. Antiviral actions of interferons. Clin Microbiol Rev. 2001;14(4).

Sun N, Li C, Li X-F, Deng Y-Q, Jiang T, Zhang N-N, et al. Type-IInterferon-Inducible SERTAD3 inhibits Influenza A Virus replication by blocking the Assembly of viral RNA polymerase complex. Cell Rep. 2020;33(5):108342.

Article  CAS  PubMed  Google Scholar 

Sun N, Zhang R-R, Song G-Y, Cai Q, Aliyari SR, Nielsen-Saines K, et al. SERTAD3 induces proteasomal degradation of ZIKV capsid protein and represents a therapeutic target. J Med Virol. 2023;95(2):e28451.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu S-Y, Aliyari R, Chikere K, Li G, Marsden MD, Smith JK et al. Interferon-inducible cholesterol-25-hydroxylase broadly inhibits viral entry by production of 25-hydroxycholesterol. Immunity. 2013;38(1).

Zu S, Deng Y-Q, Zhou C, Li J, Li L, Chen Q, et al. 25-Hydroxycholesterol is a potent SARS-CoV-2 inhibitor. Cell Res. 2020;30(11):1043–5.

Article  CAS  PubMed  Google Scholar 

Li C, Deng Y-Q, Wang S, Ma F, Aliyari R, Huang X-Y, et al. 25-Hydroxycholesterol protects host against Zika Virus Infection and its Associated Microcephaly in a mouse model. Immunity. 2017;46(3):446–56.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Desai TM, Marin M, Chin CR, Savidis G, Brass AL, Melikyan GB. IFITM3 restricts influenza a virus entry by blocking the formation of fusion pores following virus-endosome hemifusion. PLoS Pathog. 2014;10(4):e1004048.

Article  PubMed  PubMed Central  Google Scholar 

Compton AA, Bruel T, Porrot F, Mallet A, Sachse M, Euvrard M, et al. IFITM proteins incorporated into HIV-1 virions impair viral fusion and spread. Cell Host Microbe. 2014;16(6):736–47.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guo X, Steinkühler J, Marin M, Li X, Lu W, Dimova R, et al. Interferon-Induced transmembrane protein 3 blocks Fusion of Diverse Enveloped viruses by altering Mechanical properties of cell membranes. ACS Nano. 2021;15(5):8155–70.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Narayana SK, Helbig KJ, McCartney EM, Eyre NS, Bull RA, Eltahla A, et al. The Interferon-induced transmembrane proteins, IFITM1, IFITM2, and IFITM3 inhibit Hepatitis C Virus Entry. J Biol Chem. 2015;290(43):25946–59.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu S-Y, Sanchez DJ, Aliyari R, Lu S, Cheng G. Systematic identification of type I and type II interferon-induced antiviral factors. Proc Natl Acad Sci U S A. 2012;109(11):4239–44.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Takai Y, Miyoshi J, Ikeda W, Ogita H. Nectins and nectin-like molecules: roles in contact inhibition of cell movement and proliferation. Nat Rev Mol Cell Biol. 2008;9(8):603–15.

Article  CAS  PubMed  Google Scholar 

Samanta D, Almo SC. Nectin family of cell-adhesion molecules: structural and molecular aspects of function and specificity. Cell Mol Life Sci. 2015;72(4):645–58.

Article  CAS  PubMed  Google Scholar 

Chatterjee S, Sinha S, Kundu CN. Nectin cell adhesion molecule-4 (NECTIN-4): a potential target for cancer therapy. Eur J Pharmacol. 2021;911:174516.

Article  CAS  PubMed  Google Scholar 

M-Rabet M, Cabaud O, Josselin E, Finetti P, Castellano R, Farina A, et al. Nectin-4: a new prognostic biomarker for efficient therapeutic targeting of primary and metastatic triple-negative breast cancer. Ann Oncol. 2017;28(4):769–76.

Article  CAS  PubMed  Google Scholar 

Chu CE, Sjöström M, Egusa EA, Gibb EA, Badura ML, Zhu J, et al. Heterogeneity in NECTIN4 expression across Molecular subtypes of Urothelial Cancer mediates sensitivity to Enfortumab Vedotin. Clin Cancer Res. 2021;27(18):5123–30.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bekos C, Muqaku B, Dekan S, Horvat R, Polterauer S, Gerner C et al. NECTIN4 (PVRL4) as putative therapeutic target for a specific subtype of high Grade Serous Ovarian Cancer-An Integrative Multi-omics Approach. Cancers (Basel). 2019;11(5).

Challita-Eid PM, Satpayev D, Yang P, An Z, Morrison K, Shostak Y, et al. Enfortumab Vedotin antibody-drug Conjugate Targeting Nectin-4 is a highly potent Therapeutic Agent in multiple preclinical Cancer models. Cancer Res. 2016;76(10):3003–13.

Article  CAS  PubMed  Google Scholar 

Mühlebach MD, Mateo M, Sinn PL, Prüfer S, Uhlig KM, Leonard VHJ, et al. Adherens junction protein nectin-4 is the epithelial receptor for measles virus. Nature. 2011;480(7378):530–3.

Article  ADS  PubMed  PubMed Central  Google Scholar 

Noyce RS, Richardson CD. Nectin 4 is the epithelial cell receptor for measles virus. Trends Microbiol. 2012;20(9):429–39.

Article  CAS  PubMed  Google Scholar 

Zhang X, Lu G, Qi J, Li Y, He Y, Xu X, et al. Structure of measles virus hemagglutinin bound to its epithelial receptor nectin-4. Nat Struct Mol Biol. 2013;20(1):67–72.

Article  CAS  PubMed  Google Scholar 

Isaacs A, Lindenmann J. Virus interference. I. The interferon. Proc R Soc Lond B Biol Sci. 1957;147(927):258–67.

Article  ADS  CAS  PubMed  Google Scholar 

Kim KS, Hufnagel G, Chapman NM, Tracy S. The group B coxsackieviruses and myocarditis. Rev Med Virol. 2001;11(6):355–68.

Article  CAS  PubMed  Google Scholar 

White JM, Delos SE, Brecher M, Schornberg K. Structures and mechanisms of viral membrane fusion proteins: multiple variations on a common theme. Crit Rev Biochem Mol Biol. 2008;43(3):189–219.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carneiro FA, Bianconi ML, Weissmüller G, Stauffer F, Da Poian AT. Membrane recognition by vesicular stomatitis virus involves enthalpy-driven protein-lipid interactions. J Virol. 2002;76(8):3756–64.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Superti F, Seganti L, Ruggeri FM, Tinari A, Donelli G, Orsi N. Entry pathway of vesicular stomatitis virus into different host cells. J Gen Virol. 1987;68(Pt 2):387–99.

Article  CAS  PubMed  Google Scholar 

de Vries E, Tscherne DM, Wienholts MJ, Cobos-Jiménez V, Scholte F, García-Sastre A, et al. Dissection of the influenza a virus endocytic routes reveals macropinocytosis as an alternative entry pathway. PLoS Pathog. 2011;7(3):e1001329.

Article  PubMed  PubMed Central  Google Scholar 

Nicola AV. Herpesvirus Entry into host cells mediated by endosomal low pH. Traffic. 2016;17(9):965–75.

留言 (0)

沒有登入
gif