The Function of Circular RNAs in Myocardial Ischemia–Reperfusion Injury: Underlying Mechanisms and Therapeutic Advancement

Becker AC, Lantz CW, Forbess JM, et al. Cardiopulmonary bypass-induced inflammation and myocardial ischemia and reperfusion injury stimulates accumulation of soluble MER. Pediatr Crit Care Med. 2021;22(9):822–31. https://doi.org/10.1097/PCC.0000000000002725

Article  PubMed  PubMed Central  Google Scholar 

Tsao CW, Aday AW, Almarzooq ZI, et al. Heart disease and stroke statistics-2022 update: a report from the american heart association. Circulation. 2022;145(8):e153-e639. https://doi.org/10.1161/CIR.0000000000001052

Zhang D, Wu H, Liu D, et al. Research progress on the mechanism and treatment of inflammatory response in myocardial ischemia-reperfusion injury. Heart Surg Forum. 2022;25(3):E462–8. https://doi.org/10.1532/hsf.4725

Article  PubMed  Google Scholar 

Su Y, Zhu C, Wang B, et al. Circular RNA Foxo3 in cardiac ischemia-reperfusion injury in heart transplantation: a new regulator and target. Am J Transplant. 2021;21(9):2992–3004. https://doi.org/10.1111/ajt.16475

Article  CAS  PubMed  Google Scholar 

Sánchez-Hernández CD, Torres-Alarcón LA, González-Cortés A, et al. Ischemia/reperfusion injury: pathophysiology, current clinical management, and potential preventive approaches. Mediators Inflamm. 2020;29(2020):8405370. https://doi.org/10.1155/2020/8405370

Article  CAS  Google Scholar 

Cai J, Chen X, Liu X, et al. AMPK: the key to ischemia-reperfusion injury. J Cell Physiol. 2022;237(11):4079–96. https://doi.org/10.1002/jcp.30875

Article  CAS  PubMed  Google Scholar 

Ofir M, Arad M, Porat E, et al. Increased glycogen stores due to gamma-AMPK overexpression protects against ischemia and reperfusion damage. Biochem Pharmacol. 2008;75(7):1482–91. https://doi.org/10.1016/j.bcp.2007.12.011

Article  CAS  PubMed  Google Scholar 

Savchenko AS, Borissoff JI, Martinod K, et al. VWF-mediated leukocyte recruitment with chromatin decondensation by PAD4 increases myocardial ischemia/reperfusion injury in mice. Blood. 2014;123(1):141–8. https://doi.org/10.1182/blood-2013-07-514992

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wallert M, Ziegler M, Wang X, et al. α-Tocopherol preserves cardiac function by reducing oxidative stress and inflammation in ischemia/reperfusion injury. Redox Biol. 2019;26:101292. https://doi.org/10.1016/j.redox.2019.101292

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li Y, Chen B, Yang X, et al. S100a8/a9 signaling causes mitochondrial dysfunction and cardiomyocyte death in response to ischemic/reperfusion injury. Circulation. 2019;140(9):751–64. https://doi.org/10.1161/CIRCULATIONAHA.118.039262

Article  CAS  PubMed  Google Scholar 

Hausenloy DJ, Yellon DM. Myocardial ischemia-reperfusion injury: a neglected therapeutic target. J Clin Invest. 2013;123(1):92–100. https://doi.org/10.1172/JCI62874

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ye J, Wang R, Wang M, et al. Hydroxysafflor yellow A ameliorates myocardial ischemia/reperfusion injury by suppressing calcium overload and apoptosis. Oxid Med Cell Longev. 2021;21(2021):6643615. https://doi.org/10.1155/2021/6643615

Article  CAS  Google Scholar 

Yao H, Xie Q, He Q, et al. Pretreatment with panaxatriol saponin attenuates mitochondrial apoptosis and oxidative stress to facilitate treatment of myocardial ischemia-reperfusion injury via the regulation of Keap1/Nrf2 Activity. Oxid Med Cell Longev. 2022;2022:9626703. https://doi.org/10.1155/2022/9626703

Zhang H, Liu Y, Cao X, et al. Nrf2 promotes inflammation in early myocardial ischemia-reperfusion via recruitment and activation of macrophages. Front Immunol. 2021;12:763760. https://doi.org/10.3389/fimmu.2021.763760

Li L, Lin L, Lei S, et al. Maslinic acid inhibits myocardial ischemia-reperfusion injury-induced apoptosis and necroptosis via promoting autophagic flux. DNA Cell Biol. 2022;41(5):487–97. https://doi.org/10.1089/dna.2021.0918

Article  CAS  PubMed  Google Scholar 

Zhao WK, Zhou Y, Xu TT, et al. Ferroptosis: opportunities and challenges in myocardial ischemia-reperfusion injury. Oxid Med Cell Longev. 2021;23(2021):9929687. https://doi.org/10.1155/2021/9929687

Article  CAS  Google Scholar 

Zhang Y, Liu D, Hu H, et al. HIF-1α/BNIP3 signaling pathway-induced-autophagy plays protective role during myocardial ischemia-reperfusion injury. Biomed Pharmacother. 2019;120:109464. https://doi.org/10.1016/j.biopha.2019.109464

Article  CAS  PubMed  Google Scholar 

Zhou WY, Cai ZR, Liu J, et al. Circular RNA: metabolism, functions and interactions with proteins. Mol Cancer. 2020;19(1):172. https://doi.org/10.1186/s12943-020-01286-3

Huang A, Zheng H, Wu Z, et al. Circular RNA-protein interactions: functions, mechanisms, and identification. Theranostics. 2020;10(8):3503–3517. https://doi.org/10.7150/thno.42174

Li J, Sun D, Pu W, et al. Circular RNAs in cancer: biogenesis, function, and clinical significance. Trends Cancer. 2020;6(4):319–36. https://doi.org/10.1016/j.trecan.2020.01.012

Article  CAS  PubMed  Google Scholar 

Gomes CPC, Schroen B, Kuster GM, et al. Regulatory RNAs in heart failure. Circulation. 2020;141(4):313–28. https://doi.org/10.1161/CIRCULATIONAHA.119.042474

Article  PubMed  PubMed Central  Google Scholar 

Salzman J, Chen RE, Olsen MN, et al. Cell-type specific features of circular RNA expression [published correction appears in PLoS Genet. 2013;9(12). https://doi.org/10.1371/annotation/f782282b-eefa-4c8d-985c-b1484e845855

Chen LL. The expanding regulatory mechanisms and cellular functions of circular RNAs. Nat Rev Mol Cell Biol. 2020;21(8):475–90. https://doi.org/10.1038/s41580-020-0243-y

Article  CAS  PubMed  Google Scholar 

Li X, Yang L, Chen LL. The biogenesis, functions, and challenges of circular RNAs. Mol Cell. 2018;71(3):428-442. https://doi.org/10.1016/j.molcel.2018.06.034

Kristensen LS, Andersen MS, Stagsted LVW, et al. The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet. 2019;20(11):675–91. https://doi.org/10.1038/s41576-019-0158-7

Article  CAS  PubMed  Google Scholar 

Bentley DL. Coupling mRNA processing with transcription in time and space. Nat Rev Genet. 2014;15(3):163–75. https://doi.org/10.1038/nrg3662

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang Y, Xue W, Li X, et al. The Biogenesis of Nascent Circular RNAs. Cell Rep. 2016;15(3):611–24. https://doi.org/10.1016/j.celrep.2016.03.058

Article  CAS  PubMed  Google Scholar 

Liang D, Tatomer DC, Luo Z, et al. The output of protein-coding genes shifts to circular RNAs when the pre-mRNA processing machinery is limiting. Mol Cell. 2017;68(5):940-954.e3. https://doi.org/10.1016/j.molcel.2017.10.034

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liang D, Wilusz JE. Short intronic repeat sequences facilitate circular RNA production. Genes Dev. 2014;28(20):2233–47. https://doi.org/10.1101/gad.251926.114

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jeck WR, Sorrentino JA, Wang K, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats [published correction appears in RNA. 2013 Mar;19(3):426]. RNA. 2013;19(2):141–157. https://doi.org/10.1261/rna.035667.112.

Zhang XO, Wang HB, Zhang Y, et al. Complementary sequence-mediated exon circularization. Cell. 2014;159(1):134–47. https://doi.org/10.1016/j.cell.2014.09.001

Article  CAS  PubMed  Google Scholar 

Guarnerio J, Bezzi M, Jeong JC, et al. Oncogenic Role of Fusion-circRNAs Derived from Cancer-Associated Chromosomal Translocations [published correction appears in Cell. 2016 Aug 11;166(4):1055–1056]. Cell. 2016;165(2):289–302. https://doi.org/10.1016/j.cell.2016.03.020

Ashwal-Fluss R, Meyer M, Pamudurti NR, et al. circRNA biogenesis competes with pre-mRNA splicing. Mol Cell. 2014;56(1):55–66. https://doi.org/10.1016/j.molcel.2014.08.019

Article  CAS  PubMed  Google Scholar 

Li X, Liu CX, Xue W, et al. Coordinated circRNA biogenesis and function with NF90/NF110 in viral infection. Mol Cell. 2017;67(2):214-227.e7. https://doi.org/10.1016/j.molcel.2017.05.023

Article  CAS  PubMed  Google Scholar 

Kramer MC, Liang D, Tatomer DC, et al. Combinatorial control of Drosophila circular RNA expression by intronic repeats, hnRNPs, and SR proteins. Genes Dev. 2015;29(20):2168–82. https://doi.org/10.1101/gad.270421.115

Article  CAS  PubMed  PubMed Central  Google Scholar 

Conn SJ, Pillman KA, Toubia J, et al. The RNA binding protein quaking regulates formation of circRNAs. Cell. 2015;160(6):1125–1134. https://doi.org/10.1016/j.cell.2015.02.014

Starke S, Jost I, Rossbach O, et al. Exon circularization requires canonical splice signals. Cell Rep. 2015;10(1):103–11. https://doi.org/10.1016/j.celrep.2014.12.002

Article  CAS  PubMed  Google Scholar 

Altesha MA, Ni T, Khan A, Liu K, Zheng X. Circular RNA in cardiovascular disease. J Cell Physiol. 2019;234(5):5588–600. https://doi.org/10.1002/jcp.27384

Article  CAS  PubMed  Google Scholar 

Sanger HL, Klotz G, Riesner D, et al. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc Natl Acad Sci U S A. 1976;73(11):3852–6. https://doi.org/10.1073/pnas.73.11.3852

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu J, Liu T, Wang X, et al. Circles reshaping the RNA world: from waste to treasure. Mol Cancer. 2017;16(1):58. https://doi.org/10.1186/s12943-017-0630-y

Salmena L, Poliseno L, Tay Y, et al. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language. Cell. 2011;146(3):353–8. https://doi.org/10.1016/j.cell.2011.07.014

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif