Optimize the parameters for the synthesis by the ionic gelation technique, purification, and freeze-drying of chitosan-sodium tripolyphosphate nanoparticles for biomedical purposes

Mayet N, Choonara YE, Kumar P, Tomar LK, Tyagi C, Du Toit LC, et al. A comprehensive review of advanced biopolymeric wound healing systems. J Pharm Sci. 2014;103(8):2211–30.

Article  Google Scholar 

Abdelrahman T, Newton H. Wound dressings: principles and practice. Surg. 2011;29(10):491–5.

Google Scholar 

Hoque J, Haldar J. Direct Synthesis of dextran-based antibacterial hydrogels for extended release of biocides and eradication of topical biofilms. ACS Appl Mater Interfaces. 2017;9(19):15975–85.

Article  Google Scholar 

Leaper D, Assadian O, Edmiston CE. Approach to chronic wound infections. Br J Dermatol. 2015;173(2):351–8.

Article  Google Scholar 

Barroso A, Mestre H, Ascenso A, Simões S, Reis C. Nanomaterials in wound healing: from material sciences to wound healing applications. Nano Sel. 2020;1(5):443–60.

Article  Google Scholar 

Saghazadeh S, Rinoldi C, Schot M, Kashaf SS, Sharifi F, Jalilian E, et al. Drug delivery systems and materials for wound healing applications. Adv Drug Deliv Rev. 2018;127:138–66. Elsevier B.V.

Article  Google Scholar 

Wang W, Lu KJ, Yu CH, Huang QL, Du YZ. Nano-drug delivery systems in wound treatment and skin regeneration. J Nanobiotechnol. 2019;17:82 BioMed Central Ltd.

Article  Google Scholar 

Mihai MM, Dima MB, Dima B, Holban AM. Nanomaterials for wound healing and infection control. Materials. 2019;12:2176. MDPI AG.

Article  Google Scholar 

Miguel SP, Moreira AF, Correia IJ. Chitosan based-asymmetric membranes for wound healing: a review. Int J Biol Macromol. 2019;127:460–75.

Article  Google Scholar 

Bashir SM, Ahmed Rather G, Patrício A, Haq Z, Sheikh AA, Shah MZUH, et al. Chitosan nanoparticles: a versatile platform for biomedical applications. Materials. 2022;15(19):6521.

Article  Google Scholar 

Roy H, Nayak BS, Nandi S. Chitosan anchored nanoparticles in current drug development utilizing computer-aided pharmacokinetic modeling: case studies for target specific cancer treatment and future prospective. Curr Pharm Des. 2020;26(15):1666–75.

Article  Google Scholar 

Szymańska E, Winnicka K. Stability of chitosan—a challenge for pharmaceutical and biomedical applications. Mar Drugs. 2015;13(4):1819.

Article  Google Scholar 

Mohammed MA, Syeda JTM, Wasan KM, Wasan EK. An overview of chitosan nanoparticles and its application in non-parenteral drug delivery. Pharmaceutics. 2017;9(4):53.

Article  Google Scholar 

Moeini A, Pedram P, Makvandi P, Malinconico M, Gomez d’ Ayala G. Wound healing and antimicrobial effect of active secondary metabolites in chitosan-based wound dressings: a review. Carbohydr Polym. 2020;233:115839. Elsevier Ltd.

Article  Google Scholar 

Van Bavel N, Issler T, Pang L, Anikovskiy M, Prenner EJ. A simple method for synthesis of chitosan nanoparticles with ionic gelation and homogenization. Molecules. 2023;28(11):4328.

Article  Google Scholar 

Masarudin MJ, Cutts SM, Evison BJ, Phillips DR, Pigram PJ. Factors determining the stability, size distribution, and cellular accumulation of small, monodisperse chitosan nanoparticles as candidate vectors for anticancer drug delivery: application to the passive encapsulation of [14C]-doxorubicin. Nanotechnol Sci Appl. 2015;8:67–80.

Article  Google Scholar 

Zohri M, Javar HA, Gazori T, Khoshayand MR, Aghaee-Bakhtiari SH, Ghahremani MH. Response surface methodology for statistical optimization of chitosan/alginate nanoparticles as a vehicle for recombinant human bone morphogenetic protein-2 delivery. Int J Nanomedicine. 2020;15:8345–56.

Article  Google Scholar 

Algharib SA, Dawood A, Zhou K, Chen D, Li C, Meng K, et al. Preparation of chitosan nanoparticles by ionotropic gelation technique: Effects of formulation parameters and in vitro characterization. J Mol Struct. 2022;1252:132129.

Article  Google Scholar 

Fornaguera C, Solans C. Analytical methods to characterize and purify polymeric nanoparticles. Int J Polym Sci. 2018;2018:1–10. Hindawi Limited.

Hashad RA, Ishak RAH, Geneidi AS, Mansour S. Methotrexate loading in chitosan nanoparticles at a novel pH: response surface modeling, optimization and characterization. Int J Biol Macromol. 2016;91:630–9.

Article  Google Scholar 

Katas H, Raja MAG, Lam KL. Development of chitosan nanoparticles as a stable drug delivery system for protein/siRNA. Int J Biomater. 2013;2013:146320.

Article  Google Scholar 

Tsai ML, Chen RH, Bai SW, Chen WY. The storage stability of chitosan/tripolyphosphate nanoparticles in a phosphate buffer. Carbohydr Polym. 2011;84(2):756–61.

Article  Google Scholar 

Rampino A, Borgogna M, Blasi P, Bellich B, Cesàro A. Chitosan nanoparticles: Preparation, size evolution and stability. Int J Pharm. 2013;455(1–2):219–28.

Article  Google Scholar 

Almalik A, Alradwan I, Kalam MA, Alshamsan A. Effect of cryoprotection on particle size stability and preservation of chitosan nanoparticles with and without hyaluronate or alginate coating. Saudi Pharm J. 2017;25(6):861–7. SPJ Off Publ Saudi Pharm Soc.

Article  Google Scholar 

Umerska A, Paluch KJ, Santos-Martinez MJ, Corrigan OI, Medina C, Tajber L. Freeze drying of polyelectrolyte complex nanoparticles: Effect of nanoparticle composition and cryoprotectant selection. Int J Pharm. 2018;552(1–2):27–38.

Article  Google Scholar 

Pan C, Qian J, Fan J, Guo H, Gou L, Yang H, et al. Preparation nanoparticle by ionic cross-linked emulsified chitosan and its antibacterial activity. Colloids Surfaces A Physicochem Eng Asp. 2019;568:362–70.

Article  Google Scholar 

Fan W, Yan W, Xu Z, Ni H. Formation mechanism of monodisperse, low molecular weight chitosan nanoparticles by ionic gelation technique. Colloids Surf B Biointerfaces. 2012;90(1):21–7.

Article  Google Scholar 

Sullivan DJ, Cruz-Romero M, Collins T, Cummins E, Kerry JP, Morris MA. Synthesis of monodisperse chitosan nanoparticles. Food Hydrocoll. 2018;83:355–64.

Article  Google Scholar 

Rodolfo C, Eusébio D, Ventura C, Nunes R, Florindo HF, Costa D, et al. Design of experiments to achieve an efficient chitosan-based DNA vaccine delivery system. Pharmaceutics. 2021;13(9):1369.

Article  Google Scholar 

Ardean C, Davidescu CM, Nemeş NS, Negrea A, Ciopec M, Duteanu N, et al. Factors influencing the antibacterial activity of chitosan and chitosan modified by functionalization. Int J Mol Sci. 2021;22(14):7449.

Article  Google Scholar 

Roy H, Nandi S, Pavani U, Lakshmi U, Reddy TS, Gayatri DVS. Optimization and quality by design approach for piroxicam fast dissolving tablet formulations using box-behnken design. Curr Drug Ther. 2019;15(2):152–65.

Article  Google Scholar 

Roy H, Maddela S, Munagala A, Rahaman SA, Nandi S. A quality by design approach of metronidazole bigel and assessment of antimicrobial study utilizing box-behnken design. Comb Chem High Throughput Screen. 2021;24(10):1628–43.

Article  Google Scholar 

Vigata M, Meinert C, Bock N, Dargaville BL, Hutmacher DW. Deciphering the molecular mechanism of water interaction with gelatin methacryloyl hydrogels: role of ionic strength, ph, drug loading and hydrogel network characteristics. Biomedicines. 2021;9(5):574.

Article  Google Scholar 

Zhu Y, Marin LM, Xiao Y, Gillies ER, Siqueira WL. Ph-sensitive chitosan nanoparticles for salivary protein delivery. Nanomaterials. 2021;11(4):1028.

Article  Google Scholar 

Marangon CA, Vigilato Rodrigues M, Vicente Bertolo MR, Amaro Martins V da C, de Guzzi Plepis AM, Nitschke M. The effects of ionic strength and pH on antibacterial activity of hybrid biosurfactant-biopolymer nanoparticles. J Appl Polym Sci. 2022;139(1):51437.

Fu B, Liu Q, Liu M, Chen X, Lin H, Zheng Z, et al. Carbon dots enhanced gelatin/chitosan bio-nanocomposite packaging film for perishable foods. Chinese Chem Lett. 2022;33(10):4577–82.

Article  Google Scholar 

Xie W, Zhao K, Xu L, Gao N, Zhao H, Gong Z, et al. Oxalic acid cross-linked sodium alginate and carboxymethyl chitosan hydrogel membrane for separation of dye/NaCl at high NaCl concentration. Chinese Chem Lett. 2022;33(4):1951–5.

Article  Google Scholar 

Hadsell A, Chau H, Barber R, Kim U, Mobed-Miremadi M. Supervised learning for predictive pore size classification of regenerated cellulose membranes based on atomic force microscopy measurements. Materials (Basel, Switzerland). 2021;14(21):6724.

Article  Google Scholar 

Gan Q, Wang T, Cochrane C, McCarron P. Modulation of surface charge, particle size and morphological properties of chitosan-TPP nanoparticles intended for gene delivery. Colloids Surfaces B Biointerfaces. 2005;44(2–3):65–73.

Article  Google Scholar 

Hussain Z, Katas H, Mohd Amin MCI, Kumolosasi E, Buang F, Sahudin S. Self-assembled polymeric nanoparticles for percutaneous co-delivery of hydrocortisone/hydroxytyrosol: an ex vivo and in vivo study using an NC/Nga mouse model. Int J Pharm. 2013;444(1–2):109–19.

Article  Google Scholar 

Herrera-Pool E, Andrews HE. Evaluation of the formation conditions and physicochemical characterization of Chitosan Nanoparticles SEE PROFILE. 2019.

Google Scholar 

Katas H, Hussain Z, Ling TC. Chitosan nanoparticles as a percutaneous drug delivery system for hydrocortisone. J Nanomater. 2012;2012:45–45.

Article  Google Scholar 

Nallamuthu I, Devi A, Khanum F. Chlorogenic acid loaded chitosan nanoparticles with sustained release property, retained antioxidant activity and enhanced bioavailability. Asian J Pharm Sci. 2015;10(3):203–11.

Article  Google Scholar 

Abdel-Hafez SM, Hathout RM, Sammour OA. Towards better modeling of chitosan nanoparticles production: screening different factors and comparing two experimental designs. Int J Biol Macromol. 2014;64:334–40.

Article  Google Scholar 

Du Z, Liu J, Zhang T, Yu Y, Zhang Y, Zhai J, et al. Data on the preparation of chitosan-tripolyphosphate nanoparticles and its entrapment mechanism for egg white derived peptides. Data Br. 2019;28:104841.

Article  Google Scholar 

Zhang L, Kosaraju SL. Biopolymeric delivery system for controlled release of polyphenolic antioxidants. Eur Polym J. 2007;43(7):2956–66.

Article  Google Scholar 

Katas H, Alpar HO. Development and characterisation of chitosan nanoparticles for siRNA delivery. J Control Release. 2006;115(2):216–25.

Article  Google Scholar 

Nagpal K, Singh SK, Mishra DN. Optimization of brain targeted chitosan nanoparticles of Rivastigmine for improved efficacy and safety. Int J Biol Macromol. 2013;59:72–83.

Article  Google Scholar 

Elnaggar YSR, Etman SM, Abdelmonsif DA, Abdallah OY. Intranasal piperine-loaded chitosan nanoparticles as brain-targeted therapy in Alzheimer’s disease: optimization, biological efficacy, and potential toxicity. J Pharm Sci. 2015;104(10):3544–56.

Article  Google Scholar 

Abdelwahed W, Degobert G, Stainmesse S, Fessi H. Freeze-drying of nanoparticles: formulation, process and storage considerations. Adv Drug Deliv Rev. 2006;58(15):1688–713.

Article  Google Scholar 

Crowe LM, Reid DS, Crowe JH. Is trehalose special for preserving dry biomaterials? Biophys J. 1996;71(4):2087.

Article 

留言 (0)

沒有登入
gif