Gastric intestinal metaplasia: progress and remaining challenges

Smyth EC, Nilsson M, Grabsch HI, et al. Gastric cancer. Lancet. 2020;396:635–48.

Article  CAS  PubMed  Google Scholar 

Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71:209–49.

Article  PubMed  Google Scholar 

Joshi SS, Badgwell BD. Current treatment and recent progress in gastric cancer. CA Cancer J Clin. 2021;71:264–79.

Article  PubMed  PubMed Central  Google Scholar 

Lauren P. The two histological main types of gastric carcinoma: diffuse and so-called intestinal-type carcinoma. An attempt at a histo-clinical classification. Acta Pathol Microbiol Scand. 1965;64:31–49.

Article  CAS  PubMed  Google Scholar 

Correa P. Human gastric carcinogenesis: a multistep and multifactorial process–First American Cancer Society Award Lecture on Cancer Epidemiology and Prevention. Cancer Res. 1992;52:6735–40.

CAS  PubMed  Google Scholar 

Stemmermann GN, Hayashi T. Intestinal metaplasia of the gastric mucosa: a gross and microscopic study of its distribution in various disease states. J Natl Cancer Inst. 1968;41:627–34.

CAS  PubMed  Google Scholar 

Spechler SJ, Souza RF. Barrett’s esophagus. N Engl J Med. 2014;371:836–45.

Article  CAS  PubMed  Google Scholar 

Goldenring JR, Mills JC. Cellular Plasticity, Reprogramming, and Regeneration: Metaplasia in the Stomach and Beyond. Gastroenterology. 2022;162:415–30.

Article  CAS  PubMed  Google Scholar 

Adkins-Threats M, Mills JC. Cell plasticity in regeneration in the stomach and beyond. Curr Opin Genet Dev. 2022;75: 101948.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nowicki-Osuch K, Zhuang L, Jammula S, et al. Molecular phenotyping reveals the identity of Barrett’s esophagus and its malignant transition. Science. 2021;373:760–7.

Article  CAS  PubMed  Google Scholar 

Huang K, Ramnarayanan K, Zhu F, et al. Genomic and Epigenomic Profiling of High-Risk Intestinal Metaplasia Reveals Molecular Determinants of Progression to Gastric Cancer. Cancer Cell. 2018;33:137-50.e5.

Article  CAS  PubMed  Google Scholar 

Choi E, Roland JT, Barlow BJ, et al. Cell lineage distribution atlas of the human stomach reveals heterogeneous gland populations in the gastric antrum. Gut. 2014;63:1711–20.

Article  PubMed  Google Scholar 

Schmidt PH, Lee JR, Joshi V, et al. Identification of a metaplastic cell lineage associated with human gastric adenocarcinoma. Lab Invest. 1999;79:639–46.

CAS  PubMed  Google Scholar 

Bockerstett KA, Lewis SA, Noto CN, et al. Single-Cell Transcriptional Analyses Identify Lineage-Specific Epithelial Responses to Inflammation and Metaplastic Development in the Gastric Corpus. Gastroenterology. 2020;159:2116-29.e4.

Article  CAS  PubMed  Google Scholar 

Bockerstett KA, Lewis SA, Wolf KJ, et al. Single-cell transcriptional analyses of spasmolytic polypeptide-expressing metaplasia arising from acute drug injury and chronic inflammation in the stomach. Gut. 2020;69:1027–38.

Article  CAS  PubMed  Google Scholar 

Goldenring J. Pyloric metaplasia, pseudopyloric metaplasia, ulcer-associated cell lineage and spasmolytic polypeptide-expressing metaplasia: reparative lineages in the gastrointestinal mucosa. J Pathol. 2018;245:132–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lennerz J, Kim S, Oates E, et al. The transcription factor MIST1 is a novel human gastric chief cell marker whose expression is lost in metaplasia, dysplasia, and carcinoma. Am J Pathol. 2010;177:1514–33.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Radyk MD, Burclaff J, Willet SG, et al. Metaplastic Cells in the Stomach Arise, Independently of Stem Cells, via Dedifferentiation or Transdifferentiation of Chief Cells. Gastroenterology. 2018;154:839-43.e2.

Article  PubMed  Google Scholar 

Burclaff J, Osaki LH, Liu D, et al. Targeted Apoptosis of Parietal Cells Is Insufficient to Induce Metaplasia in Stomach. Gastroenterology. 2017;152:762-6.e7.

Article  CAS  PubMed  Google Scholar 

Choi E, Hendley A, Bailey J, et al. Expression of Activated Ras in Gastric Chief Cells of Mice Leads to the Full Spectrum of Metaplastic Lineage Transitions. Gastroenterology. 2016;150:918-30.e13.

Article  CAS  PubMed  Google Scholar 

Brown JW, Cho CJ, Mills JC. Paligenosis: cellular remodeling during tissue repair. Annu Rev Physiol. 2022;84:461–83.

Article  CAS  PubMed  Google Scholar 

Giroux V, Rustgi AK. Metaplasia: tissue injury adaptation and a precursor to the dysplasia-cancer sequence. Nat Rev Cancer. 2017;17:594–604.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jin RU, Mills JC. The cyclical hit model: how paligenosis might establish the mutational landscape in Barrett’s esophagus and esophageal adenocarcinoma. Curr Opin Gastroenterol. 2019;35:363–70.

Article  PubMed  Google Scholar 

Evans JA, Carlotti E, Lin ML, et al. Clonal Transitions and Phenotypic Evolution in Barrett’s Esophagus. Gastroenterology. 2022;162:1197-209.e13.

Article  PubMed  Google Scholar 

Correa P, Piazuelo MB, Wilson KT. Pathology of gastric intestinal metaplasia: clinical implications. Am J Gastroenterol. 2010;105:493–8.

Article  PubMed  PubMed Central  Google Scholar 

Teglbjaerg PS, Nielsen HO. “Small intestinal type” and “colonic type” intestinal metaplasia of the human stomach, and their relationship to the histogenetic types of gastric adenocarcinoma. Acta Pathol Microbiol Scand A. 1978;86A:351–5.

CAS  PubMed  Google Scholar 

Segura DI, Montero C. Histochemical characterization of different types of intestinal metaplasia in gastric mucosa. Cancer. 1983;52:498–503.

Article  CAS  PubMed  Google Scholar 

González C, Sanz-Anquela J, Companioni O, et al. Incomplete type of intestinal metaplasia has the highest risk to progress to gastric cancer: results of the Spanish follow-up multicenter study. J Gastroenterol Hepatol. 2016;31:953–8.

Article  PubMed  Google Scholar 

Busslinger GA, de Barbanson B, Oka R, et al. (2021) Molecular characterization of Barrett's esophagus at single-cell resolution. Proc Natl Acad Sci U S A 118

Lavery DL, Nicholson AM, Poulsom R, et al. The stem cell organisation, and the proliferative and gene expression profile of Barrett’s epithelium, replicates pyloric-type gastric glands. Gut. 2014;63:1854–63.

Article  CAS  PubMed  Google Scholar 

Zeng Y, Li QK, Roy S, et al. Shared features of metaplasia and the development of adenocarcinoma in the stomach and esophagus. Front Cell Dev Biol. 2023;11:1151790.

Article  PubMed  PubMed Central  Google Scholar 

Graham DY, Rugge M, Genta RM. Diagnosis: gastric intestinal metaplasia - what to do next? Curr Opin Gastroenterol. 2019;35:535–43.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jass J, Filipe M. A variant of intestinal metaplasia associated with gastric carcinoma: a histochemical study. Histopathology. 1979;3:191–9.

Article  CAS  PubMed  Google Scholar 

Rokkas T, Filipe MI, Sladen GE. Detection of an increased incidence of early gastric cancer in patients with intestinal metaplasia type III who are closely followed up. Gut. 1991;32:1110–3.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brown JW, Das KK, Kalas V, et al. mAb Das-1 recognizes 3’-Sulfated Lewis A/C, which is aberrantly expressed during metaplastic and oncogenic transformation of several gastrointestinal Epithelia. PLoS ONE. 2021;16: e0261082.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen B, Scurrah CR, McKinley ET, et al. Differential pre-malignant programs and microenvironment chart distinct paths to malignancy in human colorectal polyps. Cell. 2021;184:6262-80.e26.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dinis-Ribeiro M, Areia M, de Vries AC, et al. Management of precancerous conditions and lesions in the stomach (MAPS): guideline from the European Society of Gastrointestinal Endoscopy (ESGE), European Helicobacter Study Group (EHSG), European Society of Pathology (ESP), and the Sociedade Portuguesa de Endoscopia Digestiva (SPED). Endoscopy. 2012;44:74–94.

Article  CAS  PubMed  Google Scholar 

Rappold GA, Hameister H, Cremer T, et al. c-myc and immunoglobulin kappa light chain constant genes are on the 8q+ chromosome of three Burkitt lymphoma lines with t(2;8) translocations. Embo j. 1984;3:2951–5.

Article 

留言 (0)

沒有登入
gif