Sensors of Intracellular Nucleic Acids Activating STING-Dependent Production of Interferons in Immunocompetent Cells

Zahid A., Ismail H., Li B., Jin T. 2020. Molecular and structural basis of DNA sensors in antiviral innate immunity. Front Immunol. 11, 613039. https://doi.org/10.3389/fimmu.2020.613039

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bartok E., Hartmann G. 2020. Immune sensing mechanisms that discriminate self from altered self and foreign nucleic acids. Immunity. 53 (1), 54–77. https://doi.org/10.1016/j.immuni.2020.06.014

Article  CAS  PubMed  PubMed Central  Google Scholar 

A., Hur S. 2020. Regulation of cGAS- and RLR-mediated immunity to nucleic acids. Nat. Immunol. 21, 17–29. https://doi.org/10.1038/s41590-019-0556-1

Jiang M., Chen P., Wang L., Li W., Chen B., Liu Y., Wang H., Zhao S., Ye L., He Y., Zhou C. 2020. cGAS–STING, an important pathway in cancer immunotherapy. J. Hematol. Oncol. 13, 81. https://doi.org/10.1186/s13045-020-00916-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou J., Zhuang Z., Li J., Feng Z. 2023. Significance of the cGAS–STING pathway in health and disease. Int. J. Mol. Sci. 24 (17), 13316. https://doi.org/10.3390/ijms241713316

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen Q., Sun L., Chen Z.J. 2016. Regulation and function of the cGAS–STING pathway of cytosolic DNA sensing. Nat. Immunol. 17, 1142–1149. https://doi.org/10.1038/ni.3558

Article  CAS  PubMed  Google Scholar 

Li Q., Tian S., Liang J., Fan J., Lai J., Chen Q. 2021. Therapeutic development by targeting the cGAS–STING Pathway in autoimmune disease and cancer. Front. Pharmacol. 12, 779425. https://doi.org/10.3389/fphar.2021.779425

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang D., Liu Y., Zhu Y., Zhang Q., Guan H., Liu S., Chen S., Mei C., Chen C., Liao Z., Xi Y., Ouyang S., Feng X.-H., Liang T., Shen L., Xu P. 2022. A non-canonical cGAS–STING-PERK pathway facilitates the translational program critical for senescence and organ fibrosis. Nat. Cell Biol. 24 (5), 766–782. https://doi.org/10.1038/s41556-022-00894-z

Article  CAS  PubMed  Google Scholar 

Sun L., Wu J., Du F., Chen X., Chen Z.J. 2013. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science. 339, 786–791. https://doi.org/10.1126/science.1232458

Article  CAS  PubMed  Google Scholar 

Wu X., Wu F.-H., Wang X., Wang L., Siedow J.N., Zhang W., Pei Z.-M. 2014. Molecular evolutionary and structural analysis of the cytosolic DNA sensor cGAS and STING. Nucleic Acids Res. 42 (13), 8243–8257. https://doi.org/10.1093/nar/gku569

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou W., Whiteley A.T., de Oliveira Mann C.C., Morehouse B.R., Nowak R.P., Fischer E.S., Gray N.S., Mekalanos J.J., Kranzusch P.J. 2018. Structure of the human cGAS-DNA complex reveals enhanced control of immune surveillance. Cell. 174 (2), 300–311, e11. https://doi.org/10.1016/j.cell.2018.06.026

Wang D., Zhao H., Shen Y., Chen Q. 2022. A variety of nucleic acid species are sensed by cGAS, implications for its diverse functions. Front. Immunol. 13, 826880. https://doi.org/10.3389/fimmu.2022.826880

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu J., Sun L., Chen X., Du F., Shi H., Chen C., Chen Z.J. 2013. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science. 339 (6121), 826–830. https://doi.org/10.1126/science.1229963

Article  CAS  PubMed  Google Scholar 

Herzner A.-M., Hagmann C.A., Goldeck M., Wolter S., Kübler K., Wittmann S., Gramberg T., Andreeva L., Hopfner K.-P. Mertens C., Zillinger T., Jin T., Xiao T. S., Bartok E., Coch C., Ackermann D., Hornung V., Ludwig J., Barchet W., Hartmann G., Schlee M. 2015. Sequence-specific activation of the DNA sensor cGAS by Y-form DNA structures as found in primary HIV-1 ssDNA. Nat. Immunol. 16 (10), 1025–1033. https://doi.org/10.1038/ni.3267

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gentili M., Kowal J., Tkach M., Satoh T., Lahaye X., Conrad C., Boyron M., Lombard B., Durand S., Kroemer G., Loew D., Dalod M., Théry C., Manel N. 2015. Transmission of innate immune signaling by packaging of cGAMP in viral particles. Science. 349 (6253),1232–1236. https://doi.org/10.1126/science.aab3628

Article  CAS  PubMed  Google Scholar 

Zhang X., Wu J., Du F., Xu H., Sun L., Chen Z., Brautigam C.A, Zhang X., Chen Z.J. 2014. The cytosolic DNA sensor cGAS forms an oligomeric complex with DNA and undergoes switch-like conformational changes in the activation loop. Cell Rep. 6 (3), 421–430. https://doi.org/10.1016/j.celrep.2014.01.003

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li X., Shu C., Yi G., Chaton C.T., Shelton C.L., Diao J., Zuo X., Kao C.C., Herr A. B., Li P. 2013. Cyclic GMP-AMP synthase is activated by double-stranded DNA-induced oligomerization. Immunity. 39 (6), 1019–1031. https://doi.org/10.1016/j.immuni.2013.10.019

Article  CAS  PubMed  Google Scholar 

Kranzusch P.J., Lee A.S.-Y., Berger J.M., Doudna J.A. 2013. Structure of human cGAS reveals a conserved family of second-messenger enzymes in innate immunity. Cell Rep. 3 (5), 1362–1368. https://doi.org/10.1016/j.celrep.2013.05.008

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huérfano S., Šroller V., Bruštíková K, Horníková L, Forstová J. 2022. The interplay between viruses and host DNA sensors. Viruses. 14 (4), 666. https://doi.org/10.3390/v14040666

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yoh S.M., Schneider M., Seifried J., Soonthornvacharin S., Akleh R.E., Olivieri K.C., De Jesus P.D., Ruan C., de Castro E., Ruiz P.A., Germanaud D., des Portes V., García-Sastre A., König R., Chanda S.K. 2015. PQBP1 is a proximal sensor of the cGAS-dependent innate response to HIV-1. Cell. 161 (6),1293–1305. https://doi.org/10.1016/j.cell.2015.04.050

Article  CAS  PubMed  PubMed Central  Google Scholar 

Seo G.J., Yang A., Tan B., Kim S., Liang Q., Choi Y., Yuan W., Feng P., Park H.-S., Jung J.U. 2015. Akt kinase-mediated checkpoint of cGAS DNA sensing pathway. Cell Rep. 13 (2), 440–449. https://doi.org/10.1016/j.celrep.2015.09.007

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xia P., Ye B., Wang S., Zhu X., Du Y., Xiong Z., Tian Y., Fan Z. 2016. Glutamylation of the DNA sensor cGAS regulates its binding and synthase activity in antiviral immunity. Nat. Immunol. 17 (4), 369–378. https://doi.org/10.1038/ni.3356

Article  CAS  PubMed  Google Scholar 

Jiang H., Xue X., Panda S., Kawale A., Hooy R.M., Liang F., Sohn J., Sung P., Gekara N.O. 2019. Chromatin-bound cGAS is an inhibitor of DNA repair and hence accelerates genome destabilization and cell death. EMBO J. 38 (21), e102718. https://doi.org/10.15252/embj.2019102718

Article  CAS  PubMed  PubMed Central  Google Scholar 

Michalski S., Mann C.C. de O., Stafford C.A., Witte G., Bartho J., Lammens K., Hornung V., Hopfner K.-P. Structural basis for sequestration and autoinhibition of cGAS by chromatin. Nature. 587 (7835), 678–682. https://doi.org/10.1038/s41586-020-2748-0

Zhou S., Su T., Cheng F., Cole J., Liu X., Zhang B., Alam S., Liu J., Zhu G. 2023. Engineering cGAS-agonistic oligonucleotides as therapeutics and vaccine adjuvants for cancer immunotherapy. bioRxiv. 2023.07.13.548237. Preprint. https://doi.org/10.1101/2023.07.13.548237

Ishikawa H., Barber G.N. 2008. STING is an endoplasmic reticulum adaptor that facilitates innate immune signaling. Nature. 455, 674–678. https://doi.org/10.1038/nature07317

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hussain B., Xie Y., Jabeen U., Lu D., Yang B., Wu C., Shang G. 2022. Activation of STING based on its structural features. Front. Immunol. 13, 808607. https://doi.org/10.3389/fimmu.2022.808607

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang X., Shi H., Wu J., Zhang X., Sun L., Chen C., Chen Z.J. 2013. Cyclic GMP-AMP containing mixed phosphodiester linkages is an endogenous high-affinity ligand for STING. Mol. Cell. 51, 226–235. https://doi.org/10.1016/j.molcel.2013.05.022

Article  CAS  PubMed  Google Scholar 

Kato H., Takeuchi O., Mikamo-Satoh E., Hirai R., Kawai T., Matsushita K., Hiiragi A., Dermody T.S., Fujita T., Akira S. 2008. Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid–inducible gene-I and melanoma differentiation–associated gene 5. J. Exp. Med. 205 (7), 1601–1610. https://doi.org/10.1084/jem.20080091

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shang G., Zhang C., Chen Z.J., Bai X.-C., Zhang X. 2019. Cryo-EM structures of STING reveal its mechanism of activation by cyclic GMP–AMP. Nature. 567, 389–393. https://doi.org/10.1038/s41586-019-0998-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mukai K., Konno H., Akiba T., Uemura T., Waguri S., Kobayashi T., Barber G.N., Arai H., Taguchi T. 2016. Activation of STING requires palmitoylation at the Golgi. Nat. Commun. 7, 11932. https://doi.org/10.1038/ncomms11932

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu S., Cai X., Wu J., Cong Q., Chen X., Li T., Du F., Ren J., Wu Y.-T., Grishin N.V., Chen Z.J. 2015. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science. 347 (6227), eaat8657. https://doi.org/10.1126/science.aaa2630

Agalioti T., Lomvardas S., Parekh B., Yie J., Maniatis T., Thanos D. 2000. Ordered recruitment of chromatin modifying and general transcription factors to the IFNb promoter. Cell. 103 (4), 667–678. https://doi.org/10.1016/S0092-8674(00)00169-0

留言 (0)

沒有登入
gif