Zahid A., Ismail H., Li B., Jin T. 2020. Molecular and structural basis of DNA sensors in antiviral innate immunity. Front Immunol. 11, 613039. https://doi.org/10.3389/fimmu.2020.613039
Article CAS PubMed PubMed Central Google Scholar
Bartok E., Hartmann G. 2020. Immune sensing mechanisms that discriminate self from altered self and foreign nucleic acids. Immunity. 53 (1), 54–77. https://doi.org/10.1016/j.immuni.2020.06.014
Article CAS PubMed PubMed Central Google Scholar
A., Hur S. 2020. Regulation of cGAS- and RLR-mediated immunity to nucleic acids. Nat. Immunol. 21, 17–29. https://doi.org/10.1038/s41590-019-0556-1
Jiang M., Chen P., Wang L., Li W., Chen B., Liu Y., Wang H., Zhao S., Ye L., He Y., Zhou C. 2020. cGAS–STING, an important pathway in cancer immunotherapy. J. Hematol. Oncol. 13, 81. https://doi.org/10.1186/s13045-020-00916-z
Article CAS PubMed PubMed Central Google Scholar
Zhou J., Zhuang Z., Li J., Feng Z. 2023. Significance of the cGAS–STING pathway in health and disease. Int. J. Mol. Sci. 24 (17), 13316. https://doi.org/10.3390/ijms241713316
Article CAS PubMed PubMed Central Google Scholar
Chen Q., Sun L., Chen Z.J. 2016. Regulation and function of the cGAS–STING pathway of cytosolic DNA sensing. Nat. Immunol. 17, 1142–1149. https://doi.org/10.1038/ni.3558
Article CAS PubMed Google Scholar
Li Q., Tian S., Liang J., Fan J., Lai J., Chen Q. 2021. Therapeutic development by targeting the cGAS–STING Pathway in autoimmune disease and cancer. Front. Pharmacol. 12, 779425. https://doi.org/10.3389/fphar.2021.779425
Article CAS PubMed PubMed Central Google Scholar
Zhang D., Liu Y., Zhu Y., Zhang Q., Guan H., Liu S., Chen S., Mei C., Chen C., Liao Z., Xi Y., Ouyang S., Feng X.-H., Liang T., Shen L., Xu P. 2022. A non-canonical cGAS–STING-PERK pathway facilitates the translational program critical for senescence and organ fibrosis. Nat. Cell Biol. 24 (5), 766–782. https://doi.org/10.1038/s41556-022-00894-z
Article CAS PubMed Google Scholar
Sun L., Wu J., Du F., Chen X., Chen Z.J. 2013. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science. 339, 786–791. https://doi.org/10.1126/science.1232458
Article CAS PubMed Google Scholar
Wu X., Wu F.-H., Wang X., Wang L., Siedow J.N., Zhang W., Pei Z.-M. 2014. Molecular evolutionary and structural analysis of the cytosolic DNA sensor cGAS and STING. Nucleic Acids Res. 42 (13), 8243–8257. https://doi.org/10.1093/nar/gku569
Article CAS PubMed PubMed Central Google Scholar
Zhou W., Whiteley A.T., de Oliveira Mann C.C., Morehouse B.R., Nowak R.P., Fischer E.S., Gray N.S., Mekalanos J.J., Kranzusch P.J. 2018. Structure of the human cGAS-DNA complex reveals enhanced control of immune surveillance. Cell. 174 (2), 300–311, e11. https://doi.org/10.1016/j.cell.2018.06.026
Wang D., Zhao H., Shen Y., Chen Q. 2022. A variety of nucleic acid species are sensed by cGAS, implications for its diverse functions. Front. Immunol. 13, 826880. https://doi.org/10.3389/fimmu.2022.826880
Article CAS PubMed PubMed Central Google Scholar
Wu J., Sun L., Chen X., Du F., Shi H., Chen C., Chen Z.J. 2013. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science. 339 (6121), 826–830. https://doi.org/10.1126/science.1229963
Article CAS PubMed Google Scholar
Herzner A.-M., Hagmann C.A., Goldeck M., Wolter S., Kübler K., Wittmann S., Gramberg T., Andreeva L., Hopfner K.-P. Mertens C., Zillinger T., Jin T., Xiao T. S., Bartok E., Coch C., Ackermann D., Hornung V., Ludwig J., Barchet W., Hartmann G., Schlee M. 2015. Sequence-specific activation of the DNA sensor cGAS by Y-form DNA structures as found in primary HIV-1 ssDNA. Nat. Immunol. 16 (10), 1025–1033. https://doi.org/10.1038/ni.3267
Article CAS PubMed PubMed Central Google Scholar
Gentili M., Kowal J., Tkach M., Satoh T., Lahaye X., Conrad C., Boyron M., Lombard B., Durand S., Kroemer G., Loew D., Dalod M., Théry C., Manel N. 2015. Transmission of innate immune signaling by packaging of cGAMP in viral particles. Science. 349 (6253),1232–1236. https://doi.org/10.1126/science.aab3628
Article CAS PubMed Google Scholar
Zhang X., Wu J., Du F., Xu H., Sun L., Chen Z., Brautigam C.A, Zhang X., Chen Z.J. 2014. The cytosolic DNA sensor cGAS forms an oligomeric complex with DNA and undergoes switch-like conformational changes in the activation loop. Cell Rep. 6 (3), 421–430. https://doi.org/10.1016/j.celrep.2014.01.003
Article CAS PubMed PubMed Central Google Scholar
Li X., Shu C., Yi G., Chaton C.T., Shelton C.L., Diao J., Zuo X., Kao C.C., Herr A. B., Li P. 2013. Cyclic GMP-AMP synthase is activated by double-stranded DNA-induced oligomerization. Immunity. 39 (6), 1019–1031. https://doi.org/10.1016/j.immuni.2013.10.019
Article CAS PubMed Google Scholar
Kranzusch P.J., Lee A.S.-Y., Berger J.M., Doudna J.A. 2013. Structure of human cGAS reveals a conserved family of second-messenger enzymes in innate immunity. Cell Rep. 3 (5), 1362–1368. https://doi.org/10.1016/j.celrep.2013.05.008
Article CAS PubMed PubMed Central Google Scholar
Huérfano S., Šroller V., Bruštíková K, Horníková L, Forstová J. 2022. The interplay between viruses and host DNA sensors. Viruses. 14 (4), 666. https://doi.org/10.3390/v14040666
Article CAS PubMed PubMed Central Google Scholar
Yoh S.M., Schneider M., Seifried J., Soonthornvacharin S., Akleh R.E., Olivieri K.C., De Jesus P.D., Ruan C., de Castro E., Ruiz P.A., Germanaud D., des Portes V., García-Sastre A., König R., Chanda S.K. 2015. PQBP1 is a proximal sensor of the cGAS-dependent innate response to HIV-1. Cell. 161 (6),1293–1305. https://doi.org/10.1016/j.cell.2015.04.050
Article CAS PubMed PubMed Central Google Scholar
Seo G.J., Yang A., Tan B., Kim S., Liang Q., Choi Y., Yuan W., Feng P., Park H.-S., Jung J.U. 2015. Akt kinase-mediated checkpoint of cGAS DNA sensing pathway. Cell Rep. 13 (2), 440–449. https://doi.org/10.1016/j.celrep.2015.09.007
Article CAS PubMed PubMed Central Google Scholar
Xia P., Ye B., Wang S., Zhu X., Du Y., Xiong Z., Tian Y., Fan Z. 2016. Glutamylation of the DNA sensor cGAS regulates its binding and synthase activity in antiviral immunity. Nat. Immunol. 17 (4), 369–378. https://doi.org/10.1038/ni.3356
Article CAS PubMed Google Scholar
Jiang H., Xue X., Panda S., Kawale A., Hooy R.M., Liang F., Sohn J., Sung P., Gekara N.O. 2019. Chromatin-bound cGAS is an inhibitor of DNA repair and hence accelerates genome destabilization and cell death. EMBO J. 38 (21), e102718. https://doi.org/10.15252/embj.2019102718
Article CAS PubMed PubMed Central Google Scholar
Michalski S., Mann C.C. de O., Stafford C.A., Witte G., Bartho J., Lammens K., Hornung V., Hopfner K.-P. Structural basis for sequestration and autoinhibition of cGAS by chromatin. Nature. 587 (7835), 678–682. https://doi.org/10.1038/s41586-020-2748-0
Zhou S., Su T., Cheng F., Cole J., Liu X., Zhang B., Alam S., Liu J., Zhu G. 2023. Engineering cGAS-agonistic oligonucleotides as therapeutics and vaccine adjuvants for cancer immunotherapy. bioRxiv. 2023.07.13.548237. Preprint. https://doi.org/10.1101/2023.07.13.548237
Ishikawa H., Barber G.N. 2008. STING is an endoplasmic reticulum adaptor that facilitates innate immune signaling. Nature. 455, 674–678. https://doi.org/10.1038/nature07317
Article CAS PubMed PubMed Central Google Scholar
Hussain B., Xie Y., Jabeen U., Lu D., Yang B., Wu C., Shang G. 2022. Activation of STING based on its structural features. Front. Immunol. 13, 808607. https://doi.org/10.3389/fimmu.2022.808607
Article CAS PubMed PubMed Central Google Scholar
Zhang X., Shi H., Wu J., Zhang X., Sun L., Chen C., Chen Z.J. 2013. Cyclic GMP-AMP containing mixed phosphodiester linkages is an endogenous high-affinity ligand for STING. Mol. Cell. 51, 226–235. https://doi.org/10.1016/j.molcel.2013.05.022
Article CAS PubMed Google Scholar
Kato H., Takeuchi O., Mikamo-Satoh E., Hirai R., Kawai T., Matsushita K., Hiiragi A., Dermody T.S., Fujita T., Akira S. 2008. Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid–inducible gene-I and melanoma differentiation–associated gene 5. J. Exp. Med. 205 (7), 1601–1610. https://doi.org/10.1084/jem.20080091
Article CAS PubMed PubMed Central Google Scholar
Shang G., Zhang C., Chen Z.J., Bai X.-C., Zhang X. 2019. Cryo-EM structures of STING reveal its mechanism of activation by cyclic GMP–AMP. Nature. 567, 389–393. https://doi.org/10.1038/s41586-019-0998-5
Article CAS PubMed PubMed Central Google Scholar
Mukai K., Konno H., Akiba T., Uemura T., Waguri S., Kobayashi T., Barber G.N., Arai H., Taguchi T. 2016. Activation of STING requires palmitoylation at the Golgi. Nat. Commun. 7, 11932. https://doi.org/10.1038/ncomms11932
Article CAS PubMed PubMed Central Google Scholar
Liu S., Cai X., Wu J., Cong Q., Chen X., Li T., Du F., Ren J., Wu Y.-T., Grishin N.V., Chen Z.J. 2015. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science. 347 (6227), eaat8657. https://doi.org/10.1126/science.aaa2630
Agalioti T., Lomvardas S., Parekh B., Yie J., Maniatis T., Thanos D. 2000. Ordered recruitment of chromatin modifying and general transcription factors to the IFNb promoter. Cell. 103 (4), 667–678. https://doi.org/10.1016/S0092-8674(00)00169-0
留言 (0)