An engineered ligand-responsive Csy4 endoribonuclease controls transgene expression from Sendai virus vectors

Dunbar CE, High KA, Joung JK, Kohn DB, Ozawa K, Sadelain M. Gene therapy comes of age. Science. 2018;359:eaan4672.

Zhao Z, Anselmo AC, Mitragotri S. Viral vector-based gene therapies in the clinic. Bioeng Transl Med. 2022;7:e10258.

Article  Google Scholar 

Lamsfus-Calle A, Daniel-Moreno A, Ureña-Bailén G, Raju J, Antony JS, Handgretinger R, et al. Hematopoietic stem cell gene therapy: the optimal use of lentivirus and gene editing approaches. Blood Rev. 2020;40:100641.

Pupo A, Fernández A, Low SH, François A, Suárez-Amarán L, Samulski RJ. AAV vectors: the Rubik’s cube of human gene therapy. Mol Ther. 2022;30:3515–41.

Article  Google Scholar 

Gardner JP, Zhu H, Colosi PC, Kurtzman GJ, Scadden DT. Robust, but transient expression of adeno-associated virus-transduced genes during human T lymphopoiesis. Blood. 1997;90:4854–64.

Article  Google Scholar 

Wu Z, Yang H, Colosi P. Effect of genome size on AAV vector packaging. Mol Ther. 2010;18:80–6.

Article  Google Scholar 

Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P, et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science. 2003;302:415–9.

Article  Google Scholar 

Biegert GWG, Rosewell Shaw A, Suzuki M. Current development in adenoviral vectors for cancer immunotherapy. Mol Ther Oncolytics. 2021;23:571–81.

Article  Google Scholar 

Schott JW, Morgan M, Galla M, Schambach A. Viral and synthetic RNA vector technologies and applications. Mol Ther. 2016;24:1513–27.

Article  Google Scholar 

Goverdhana S, Puntel M, Xiong W, Zirger JM, Barcia C, Curtin JF, et al. Regulatable gene expression systems for gene therapy applications: progress and future challenges. Mol Ther. 2005;12:189–211.

Article  Google Scholar 

Das AT, Tenenbaum L, Berkhout B. Tet-On systems for doxycycline-inducible gene expression. Curr Gene Ther. 2016;16:156–67.

Article  Google Scholar 

Chen C, Yue D, Lei L, Wang H, Lu J, Zhou Y, et al. Promoter-operating targeted expression of gene therapy in cancer: current stage and prospect. Mol Ther Nucleic Acids. 2018;11:508–14.

Article  Google Scholar 

Bukreyev A, Skiadopoulos MH, Murphy BR, Collins PL. Nonsegmented negative-strand viruses as vaccine vectors. J Virol. 2006;80:10293–306.

Article  Google Scholar 

Matveeva OV, Guo ZS, Senin VM, Senina AV, Shabalina SA, Chumakov PM. Oncolysis by paramyxoviruses: preclinical and clinical studies. Mol Ther Oncolytics. 2015;2:150017.

Article  Google Scholar 

Tanaka Y, Araki K, Tanaka S, Miyagawa Y, Suzuki H, Kamide D, et al. Sentinel lymph node-targeted therapy by oncolytic Sendai virus suppresses micrometastasis of head and neck squamous cell carcinoma in an orthotopic nude mouse model. Mol Cancer Ther. 2019;18:1430–8.

Article  Google Scholar 

Nishimura K, Segawa H, Goto T, Morishita M, Masago A, Takahashi H, et al. Persistent and stable gene expression by a cytoplasmic RNA replicon based on a noncytopathic variant Sendai virus. J Biol Chem. 2007;282:27383–91.

Article  Google Scholar 

Daito T, Fujino K, Honda T, Matsumoto Y, Watanabe Y, Tomonaga K. A novel borna disease virus vector system that stably expresses foreign proteins from an intercistronic noncoding region. J Virol. 2011;85:12170–8.

Article  Google Scholar 

Wang Q, Vossen A, Ikeda Y, Devaux P. Measles vector as a multigene delivery platform facilitating iPSC reprogramming. Gene Ther. 2019;26:151–64.

Article  Google Scholar 

Munis AM, Bentley EM, Takeuchi Y. A tool with many applications: vesicular stomatitis virus in research and medicine. Expert Opin Biol Ther. 2020;20:1187–201.

Article  Google Scholar 

Nakanishi M, Otsu M. Development of Sendai virus vectors and their potential applications in gene therapy and regenerative medicine. Curr Gene Ther. 2012;12:410–6.

Article  Google Scholar 

Kondo T, Yoshida T, Miura N, Nakanishi M. Temperature-sensitive phenotype of a mutant Sendai virus strain is caused by its insufficient accumulation of the M protein. J Biol Chem. 1993;268:21924–30.

Article  Google Scholar 

Nishimura K, Sano M, Ohtaka M, Furuta B, Umemura Y, Nakajima Y, et al. Development of defective and persistent Sendai virus vector: a unique gene delivery/expression system ideal for cell reprogramming. J Biol Chem. 2011;286:4760–71.

Article  Google Scholar 

Ohira M, Kikuchi E, Mizuta S, Yoshida N, Onodera M, Nakanishi M, et al. Production of therapeutic iduronate-2-sulfatase enzyme with a novel single-stranded RNA virus vector. Genes Cells. 2021;26:891–904.

Article  Google Scholar 

Yamaki Y, Fukushima T, Yoshida N, Nishimura K, Fukuda A, Hisatake K, et al. Utilization of a novel Sendai virus vector in ex vivo gene therapy for hemophilia A. Int J Hematol. 2021;113:493–9.

Article  Google Scholar 

Fujii Y, Arai Y, Nakagawa S, Yamasaki T, Iijima M, Yamada N, et al. CD81 inhibition with the cytoplasmic RNA vector producing anti-CD81 antibodies suppresses arthritis in a rat CIA model. Biochem Biophys Res Commun. 2022;604:22–9.

Article  Google Scholar 

Leber MF, Bossow S, Leonard VH, Zaoui K, Grossardt C, Frenzke M, et al. MicroRNA-sensitive oncolytic measles viruses for cancer-specific vector tropism. Mol Ther. 2011;19:1097–106.

Article  Google Scholar 

Rallabandi R, Sharp B, Cruz C, Wang Q, Locsin A, Driscoll CB, et al. miRNA-mediated control of exogenous OCT4 during mesenchymal-epithelial transition increases measles vector reprogramming efficiency. Mol Ther Methods Clin Dev. 2022;24:48–61.

Article  Google Scholar 

Edge RE, Falls TJ, Brown CW, Lichty BD, Atkins H, Bell JC. A let-7 MicroRNA-sensitive vesicular stomatitis virus demonstrates tumor-specific replication. Mol Ther. 2008;16:1437–43.

Article  Google Scholar 

Sano M, Iijima M, Ohtaka M, Nakanishi M. Novel strategy to control transgene expression mediated by a Sendai virus-based vector using a nonstructural C protein and endogenous microRNAs. PLoS ONE. 2016;11:e0164720.

Sano M, Ohtaka M, Iijima M, Nakasu A, Kato Y, Nakanishi M. Sensitive and long-term monitoring of intracellular microRNAs using a non-integrating cytoplasmic RNA vector. Sci Rep. 2017;7:12673.

Article  Google Scholar 

Ketzer P, Kaufmann JK, Engelhardt S, Bossow S, von Kalle C, Hartig JS, et al. Artificial riboswitches for gene expression and replication control of DNA and RNA viruses. Proc Natl Acad Sci U S A. 2014;111:E554-562.

Article  Google Scholar 

Takahashi K, Yokobayashi Y. Reversible gene regulation in mammalian cells using riboswitch-engineered vesicular stomatitis virus vector. ACS Synth Biol. 2019;8:1976–82.

Article  Google Scholar 

Yamamoto Y, Tomonaga K, Honda T. Development of an RNA virus-based episomal vector capable of switching transgene expression. Front Microbiol. 2019;10: 2485.

Article  Google Scholar 

de Silva C, Walter NG. Leakage and slow allostery limit performance of single drug-sensing aptazyme molecules based on the hammerhead ribozyme. RNA. 2009;15:76–84.

Article  Google Scholar 

Banaszynski LA, Chen LC, Maynard-Smith LA, Ooi AG, Wandless TJ. A rapid, reversible, and tunable method to regulate protein function in living cells using synthetic small molecules. Cell. 2006;126:995–1004.

Article  Google Scholar 

Bonger KM, Chen LC, Liu CW, Wandless TJ. Small-molecule displacement of a cryptic degron causes conditional protein degradation. Nat Chem Biol. 2011;7:531–7.

Article  Google Scholar 

Nishimura K, Kato T, Chen C, Oinam L, Shiomitsu E, Ayakawa D, et al. Manipulation of KLF4 expression generates iPSCs paused at successive stages of reprogramming. Stem Cell Reports. 2014;3:915–29.

Article  Google Scholar 

Nishimura K, Aizawa S, Nugroho FL, Shiomitsu E, Tran YTH, Bui PL, et al. A role for KLF4 in promoting the metabolic shift via TCL1 during induced pluripotent stem cell generation. Stem Cell Reports. 2017;8:787–801.

Article  Google Scholar 

Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337:816–21.

Article  Google Scholar 

Haurwitz RE, Jinek M, Wiedenheft B, Zhou K, Doudna JA. Sequence- and structure-specific RNA processing by a CRISPR endonuclease. Science. 2010;329:1355–8.

Article  Google Scholar 

Tsai SQ, Wyvekens N, Khayter C, Foden JA, Thapar V, Reyon D, et al. Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat Biotechnol. 2014;32:569–76.

Article  Google Scholar 

Nissim L, Perli SD, Fridkin A, Perez-Pinera P, Lu TK. Multiplexed and programmable regulation of gene networks with an integrated RNA and CRISPR/Cas toolkit in human cells. Mol Cell. 2014;54:698–710.

Article  Google Scholar 

DiAndreth B, Wauford N, Hu E, Palacios S, Weiss R. PERSIST platform provides programmable RNA regulation using CRISPR endoRNases. Nat Commun. 2022;13:2582.

Article  Google Scholar 

Lee HY, Haurwitz RE, Apffel A, Zhou K, Smart B, Wenger CD, et al. RNA-protein analysis using a conditional CRISPR nuclease. Proc Natl Acad Sci U S A. 2013;110:5416–21.

Article  Google Scholar 

Sano M, Morishita K, Oikawa S, Akimoto T, Sumaru K, Kato Y. Live-cell imaging of microRNA expression with post-transcriptional feedback control. Mol Ther Nucleic Acids. 2021;26:547–56.

Article  Google Scholar 

Yesbolatova A, Saito Y, Kitamoto N, Makino-Itou H, Ajima R, Nakano R, et al. The auxin-inducible degron 2 technology provides sharp degradation control in yeast, mammalian cells, and mice. Nat Commun. 2020;11:5701.

Article  Google Scholar 

Horikami SM, Curran J, Kolakofsky D, Moyer SA. Complexes of Sendai virus NP-P and P-L proteins are required for defective interfering particle genome replication in vitro. J Virol. 1992;66:4901–8.

Article  Google Scholar 

Nishimura K, Ohtaka M, Takada H, Kurisaki A, Tran NVK, Tran YTH, et al. Simple and effective generation of transgene-free induced pluripotent stem cells using an auto-erasable Sendai virus vector responding to microRNA-302. Stem Cell Res. 2017;23:13–9.

Article  Google Scholar 

Wei MX, Tamiya T, Chase M, Boviatsis EJ, Chang TK, Kowall NW, et al. Experimental tumor therapy in mice using the cyclophosphamide-activating cytochrome P450 2B1 gene. Hum Gene Ther. 1994;5:969–78.

Article  Google Scholar 

Roy P, Waxman DJ. Activation of oxazaphosphorines by cytochrome P450: application to gene-directed enzyme prodrug therapy for cancer. Toxicol in Vitro. 2006;20:176–86.

Article  Google Scholar 

Borchardt EK, Vandoros LA, Huang M, Lackey PE, Marzluff WF, Asokan A. Controlling mRNA stability and translation with the CRISPR endoribonuclease Csy4. RNA. 2015;21:1921–30.

Article  Google Scholar 

Wu Y, Zhang X, Wang J, Jin G, Zhang X. Research progress of the transcription factor Brn4 (Review). Mol Med Rep. 2021;23:179.

Article  Google Scholar 

留言 (0)

沒有登入
gif