Baluk P, et al. Functionally specialized junctions between endothelial cells of lymphatic vessels. J Exp Med. 2007;204(10):2349–62.
Article CAS PubMed PubMed Central Google Scholar
Ulvmar MH, Makinen T. Heterogeneity in the lymphatic vascular system and its origin. Cardiovasc Res. 2016;111(4):310–21.
Article CAS PubMed PubMed Central Google Scholar
Zhang F, et al. Lymphatic endothelial cell junctions: Molecular Regulation in Physiology and Diseases. Front Physiol. 2020;11:509.
Article PubMed PubMed Central Google Scholar
Moore JE Jr., Bertram CD. Lymphatic system flows. Annu Rev Fluid Mech. 2018;50:459–82.
Article PubMed PubMed Central Google Scholar
Alitalo K, Tammela T, Petrova TV. Lymphangiogenesis in development and human Disease. Nature. 2005;438(7070):946–53.
Article CAS PubMed Google Scholar
Chiang SP, Cabrera RM, Segall JE. Tumor cell intravasation. Am J Physiol Cell Physiol. 2016;311(1):C1–C14.
Article PubMed PubMed Central Google Scholar
Yang Y, Oliver G. Development of the mammalian lymphatic vasculature. J Clin Invest. 2014;124(3):888–97.
Article CAS PubMed PubMed Central Google Scholar
Koltowska K, et al. Getting out and about: the emergence and morphogenesis of the vertebrate lymphatic vasculature. Development. 2013;140(9):1857–70.
Article CAS PubMed Google Scholar
Wigle JT, Oliver G. Prox1 function is required for the development of the murine lymphatic system. Cell. 1999;98(6):769–78.
Article CAS PubMed Google Scholar
Wigle JT, et al. An essential role for Prox1 in the induction of the lymphatic endothelial cell phenotype. EMBO J. 2002;21(7):1505–13.
Article CAS PubMed PubMed Central Google Scholar
Johnson NC, et al. Lymphatic endothelial cell identity is reversible and its maintenance requires Prox1 activity. Genes Dev. 2008;22(23):3282–91.
Article CAS PubMed PubMed Central Google Scholar
Kim H, et al. Embryonic vascular endothelial cells are malleable to reprogramming via Prox1 to a lymphatic gene signature. BMC Dev Biol. 2010;10:72.
Article PubMed PubMed Central Google Scholar
Petrova TV, et al. Lymphatic endothelial reprogramming of vascular endothelial cells by the Prox-1 homeobox transcription factor. EMBO J. 2002;21(17):4593–9.
Article CAS PubMed PubMed Central Google Scholar
Hong YK, et al. Prox1 is a master control gene in the program specifying lymphatic endothelial cell fate. Dev Dyn. 2002;225(3):351–7.
Article CAS PubMed Google Scholar
Smith NR, et al. Vascular endothelial growth factor receptors VEGFR-2 and VEGFR-3 are localized primarily to the vasculature in human primary solid cancers. Clin Cancer Res. 2010;16(14):3548–61.
Article CAS PubMed Google Scholar
Deng Y, Zhang X, Simons M. Molecular controls of lymphatic VEGFR3 signaling. Arterioscler Thromb Vasc Biol. 2015;35(2):421–9.
Article CAS PubMed Google Scholar
Makinen T, et al. Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/D receptor VEGFR-3. EMBO J. 2001;20(17):4762–73.
Article CAS PubMed PubMed Central Google Scholar
Karkkainen MJ, et al. Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat Immunol. 2004;5(1):74–80.
Article CAS PubMed Google Scholar
Baldwin ME, et al. Vascular endothelial growth factor D is dispensable for development of the lymphatic system. Mol Cell Biol. 2005;25(6):2441–9.
Article CAS PubMed PubMed Central Google Scholar
Dellinger MT, et al. Vascular endothelial growth factor receptor-2 promotes the development of the lymphatic vasculature. PLoS ONE. 2013;8(9):e74686.
Article CAS PubMed PubMed Central Google Scholar
Wirzenius M, et al. Distinct vascular endothelial growth factor signals for lymphatic vessel enlargement and sprouting. J Exp Med. 2007;204(6):1431–40.
Article CAS PubMed PubMed Central Google Scholar
Srinivasan RS, et al. The Prox1-Vegfr3 feedback loop maintains the identity and the number of lymphatic endothelial cell progenitors. Genes Dev. 2014;28(19):2175–87.
Article CAS PubMed PubMed Central Google Scholar
Xu Y, et al. Neuropilin-2 mediates VEGF-C-induced lymphatic sprouting together with VEGFR3. J Cell Biol. 2010;188(1):115–30.
Article CAS PubMed PubMed Central Google Scholar
Karpanen T, et al. Functional interaction of VEGF-C and VEGF-D with neuropilin receptors. FASEB J. 2006;20(9):1462–72.
Article CAS PubMed Google Scholar
Jurisic G, et al. An unexpected role of semaphorin3a-neuropilin-1 signaling in lymphatic vessel maturation and valve formation. Circ Res. 2012;111(4):426–36.
Article CAS PubMed PubMed Central Google Scholar
Bouvree K, et al. Semaphorin3A, Neuropilin-1, and PlexinA1 are required for lymphatic valve formation. Circ Res. 2012;111(4):437–45.
Article CAS PubMed Google Scholar
Norrmen C, et al. FOXC2 controls formation and maturation of lymphatic collecting vessels through cooperation with NFATc1. J Cell Biol. 2009;185(3):439–57.
Article CAS PubMed PubMed Central Google Scholar
Zheng W, et al. Angiopoietin 2 regulates the transformation and integrity of lymphatic endothelial cell junctions. Genes Dev. 2014;28(14):1592–603.
Article CAS PubMed PubMed Central Google Scholar
Sabine A, et al. FOXC2 and fluid shear stress stabilize postnatal lymphatic vasculature. J Clin Invest. 2015;125(10):3861–77.
Article PubMed PubMed Central Google Scholar
Fu J, et al. Endothelial cell O-glycan deficiency causes blood/lymphatic misconnections and consequent fatty Liver Disease in mice. J Clin Invest. 2008;118(11):3725–37.
Article CAS PubMed PubMed Central Google Scholar
Astarita JL, Acton SE, Turley SJ. Podoplanin: emerging functions in development, the immune system, and cancer. Front Immunol. 2012;3:283.
Article PubMed PubMed Central Google Scholar
Schacht V, et al. T1alpha/podoplanin deficiency disrupts normal lymphatic vasculature formation and causes lymphedema. EMBO J. 2003;22(14):3546–56.
Article CAS PubMed PubMed Central Google Scholar
Weber M, et al. Interstitial dendritic cell guidance by haptotactic chemokine gradients. Science. 2013;339(6117):328–32.
Article CAS PubMed Google Scholar
Makinen T, et al. PDZ interaction site in ephrinB2 is required for the remodeling of lymphatic vasculature. Genes Dev. 2005;19(3):397–410.
Article PubMed PubMed Central Google Scholar
Senbanjo LT, Chellaiah MA. CD44: a multifunctional cell surface adhesion receptor is a Regulator of Progression and Metastasis of Cancer cells. Front Cell Dev Biol. 2017;5:18.
Article PubMed PubMed Central Google Scholar
Al-Othman N, et al. Role of CD44 in Breast cancer. Breast Dis. 2020;39(1):1–13.
Article CAS PubMed Google Scholar
Cho Y, et al. Cleaved CD44 intracellular domain supports activation of stemness factors and promotes tumorigenesis of Breast cancer. Oncotarget. 2015;6(11):8709–21.
留言 (0)