Post-transcriptional regulation of myogenic transcription factors during muscle development and pathogenesis

Allen RE, Boxhorn LK (1989) Regulation of skeletal muscle satellite cell proliferation and differentiation by transforming growth factor-beta, insulin-like growth factor I, and fibroblast growth factor. J Cell Physiol 138:311–315

Article  CAS  PubMed  Google Scholar 

Antoniou A, Mastroyiannopoulos NP, Uney JB, Phylactou LA (2014) miR-186 inhibits muscle cell differentiation through myogenin regulation. J Biol Chem 289:3923–3935

Article  CAS  PubMed  PubMed Central  Google Scholar 

Asfour HA, Allouh MZ, Said RS (2018) Myogenic regulatory factors: the orchestrators of myogenesis after 30 years of discovery. Exp Biol Med (maywood) 243:118–128

Article  CAS  PubMed  Google Scholar 

Azlan A, Dzaki N, Azzam G (2016) Argonaute: the executor of small RNA function. J Genet Genomics 43:481–494

Article  CAS  PubMed  Google Scholar 

Bach LA, Salemi R, Leeding KS (1995) Roles of insulin-like growth factor (IGF) receptors and IGF-binding proteins in IGF-II-induced proliferation and differentiation of L6A1 rat myoblasts. Endocrinology 136:5061–5069

Article  CAS  PubMed  Google Scholar 

Baghdadi MB, Castel D, Machado L, Fukada SI, Birk DE, Relaix F, Tajbakhsh S, Mourikis P (2018a) Reciprocal signalling by Notch-Collagen V-CALCR retains muscle stem cells in their niche. Nature 557:714–718

Article  CAS  PubMed  PubMed Central  Google Scholar 

Baghdadi MB, Firmino J, Soni K, Evano B, Di Girolamo D, Mourikis P, Castel D, Tajbakhsh S (2018b) Notch-Induced miR-708 antagonizes satellite cell migration and maintains quiescence. Cell Stem Cell 23(859–868):e855

Google Scholar 

Baracos VE, Martin L, Korc M, Guttridge DC, Fearon KCH (2018) Cancer-associated Cachexia. Nat Rev Dis Primers 4:17105

Article  PubMed  Google Scholar 

Beauchamp P, Nassif C, Hillock S, van der Giessen K, von Roretz C, Jasmin BJ, Gallouzi IE (2010) The cleavage of HuR interferes with its transportin-2-mediated nuclear import and promotes muscle fiber formation. Cell Death Differ 17:1588–1599

Article  CAS  PubMed  Google Scholar 

Bisbal C, Silhol M, Laubenthal H, Kaluza T, Carnac G, Milligan L, Le Roy F, Salehzada T (2000) The 2’-5’ oligoadenylate/RNase L/RNase L inhibitor pathway regulates both MyoD mRNA stability and muscle cell differentiation. Mol Cell Biol 20:4959–4969

Article  CAS  PubMed  PubMed Central  Google Scholar 

Black BL, Molkentin JD, Olson EN (1998) Multiple roles for the MyoD basic region in transmission of transcriptional activation signals and interaction with MEF2. Mol Cell Biol 18:69–77

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bober E, Lyons GE, Braun T, Cossu G, Buckingham M, Arnold HH (1991) The muscle regulatory gene, Myf-6, has a biphasic pattern of expression during early mouse development. J Cell Biol 113:1255–1265

Article  CAS  PubMed  Google Scholar 

Borensztein M, Monnier P, Court F, Louault Y, Ripoche MA, Tiret L, Yao Z, Tapscott SJ, Forne T, Montarras D, Dandolo L (2013) Myod and H19-Igf2 locus interactions are required for diaphragm formation in the mouse. Development 140:1231–1239

Article  CAS  PubMed  PubMed Central  Google Scholar 

Braun T, Arnold HH (1995) Inactivation of Myf-6 and Myf-5 genes in mice leads to alterations in skeletal muscle development. Embo J 14:1176–1186

Article  CAS  PubMed  PubMed Central  Google Scholar 

Braun T, Buschhausen-Denker G, Bober E, Tannich E, Arnold HH (1989) A novel human muscle factor related to but distinct from MyoD1 induces myogenic conversion in 10T1/2 fibroblasts. Embo J 8:701–709

Article  CAS  PubMed  PubMed Central  Google Scholar 

Braun T, Rudnicki MA, Arnold HH, Jaenisch R (1992) Targeted inactivation of the muscle regulatory gene Myf-5 results in abnormal rib development and perinatal death. Cell 71:369–382

Article  CAS  PubMed  Google Scholar 

Buckingham M (1992) Making muscle in mammals. Trends Genet 8:144–148

Article  CAS  PubMed  Google Scholar 

Buckingham M, Rigby PW (2014) Gene regulatory networks and transcriptional mechanisms that control myogenesis. Dev Cell 28:225–238

Article  CAS  PubMed  Google Scholar 

Bushby K, Finkel R, Birnkrant DJ, Case LE, Clemens PR, Cripe L, Kaul A, Kinnett K, McDonald C, Pandya S, Poysky J, Shapiro F, Tomezsko J, Constantin, Group, D.M.D.C.C.W. (2010) Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and pharmacological and psychosocial management. Lancet Neurol 9:77–93

Article  PubMed  Google Scholar 

Cacchiarelli D, Legnini I, Martone J, Cazzella V, D’Amico A, Bertini E, Bozzoni I (2011) miRNAs as serum biomarkers for Duchenne muscular dystrophy. EMBO Mol Med 3:258–265

Article  CAS  PubMed  PubMed Central  Google Scholar 

Callis TE, Pandya K, Seok HY, Tang RH, Tatsuguchi M, Huang ZP, Chen JF, Deng Z, Gunn B, Shumate J, Willis MS, Selzman CH, Wang DZ (2009) MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. J Clin Invest 119:2772–2786

Article  CAS  PubMed  PubMed Central  Google Scholar 

Campos AR, Grossman D, White K (1985) Mutant alleles at the locus elav in Drosophila melanogaster lead to nervous system defects. A Develop-Genetic Anal J Neurogenet 2:197–218

CAS  Google Scholar 

Cardinali B, Cappella M, Provenzano C, Garcia-Manteiga JM, Lazarevic D, Cittaro D, Martelli F, Falcone G (2016) MicroRNA-222 regulates muscle alternative splicing through Rbm24 during differentiation of skeletal muscle cells. Cell Death Dis 7:e2086

Article  CAS  PubMed  PubMed Central  Google Scholar 

Caretti G, Schiltz RL, Dilworth FJ, Di Padova M, Zhao P, Ogryzko V, Fuller-Pace FV, Hoffman EP, Tapscott SJ, Sartorelli V (2006) The RNA helicases p68/p72 and the noncoding RNA SRA are coregulators of MyoD and skeletal muscle differentiation. Dev Cell 11:547–560

Article  CAS  PubMed  Google Scholar 

Castel D, Baghdadi MB, Mella S, Gayraud-Morel B, Marty V, Cavaille J, Antoniewski C, Tajbakhsh S (2018) Small-RNA sequencing identifies dynamic microRNA deregulation during skeletal muscle lineage progression. Sci Rep 8:4208

Article  PubMed  PubMed Central  Google Scholar 

Chen JF, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM, Conlon FL, Wang DZ (2006) The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet 38:228–233

Article  CAS  PubMed  Google Scholar 

Cheung TH, Quach NL, Charville GW, Liu L, Park L, Edalati A, Yoo B, Hoang P, Rando TA (2012) Maintenance of muscle stem-cell quiescence by microRNA-489. Nature 482:524–528

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chikenji A, Ando H, Nariyama M, Suga T, Iida R, Gomi K (2016) MyoD is regulated by the miR-29a-Tet1 pathway in C2C12 myoblast cells. J Oral Sci 58:219–229

Article  CAS  PubMed  Google Scholar 

Coenen-Stass AML, Sork H, Gatto S, Godfrey C, Bhomra A, Krjutskov K, Hart JR, Westholm JO, O’Donovan L, Roos A, Lochmuller H, Puri PL, El Andaloussi S, Wood MJA, Roberts TC (2018) Comprehensive RNA-sequencing analysis in serum and muscle reveals novel small RNA signatures with biomarker potential for DMD. Mol Ther Nucleic Acids 13:1–15

Article  CAS  PubMed  PubMed Central  Google Scholar 

Coolican SA, Samuel DS, Ewton DZ, McWade FJ, Florini JR (1997) The mitogenic and myogenic actions of insulin-like growth factors utilize distinct signaling pathways. J Biol Chem 272:6653–6662

Article  CAS  PubMed  Google Scholar 

Crippa S, Cassano M, Messina G, Galli D, Galvez BG, Curk T, Altomare C, Ronzoni F, Toelen J, Gijsbers R, Debyser Z, Janssens S, Zupan B, Zaza A, Cossu G, Sampaolesi M (2011) miR669a and miR669q prevent skeletal muscle differentiation in postnatal cardiac progenitors. J Cell Biol 193:1197–1212

Article  CAS  PubMed  PubMed Central  Google Scholar 

Crist CG, Montarras D, Pallafacchina G, Rocancourt D, Cumano A, Conway SJ, Buckingham M (2009) Muscle stem cell behavior is modified by microRNA-27 regulation of Pax3 expression. Proc Natl Acad Sci U S A 106:13383–13387

Article  CAS  PubMed  PubMed Central  Google Scholar 

Crist CG, Montarras D, Buckingham M (2012) Muscle satellite cells are primed for myogenesis but maintain quiescence with sequestration of Myf5 mRNA targeted by microRNA-31 in mRNP granules. Cell Stem Cell 11:118–126

Article  CAS  PubMed  Google Scholar 

Davis RL, Weintraub H, Lassar AB (1987) Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51:987–1000

Article  CAS  PubMed  Google Scholar 

de Morree A, van Velthoven CTJ, Gan Q, Salvi JS, Klein JDD, Akimenko I, Quarta M, Biressi S, Rando TA (2017) Staufen1 inhibits MyoD translation to actively maintain muscle stem cell quiescence. Proc Natl Acad Sci U S A 114:E8996–E9005

留言 (0)

沒有登入
gif