Allen RE, Boxhorn LK (1989) Regulation of skeletal muscle satellite cell proliferation and differentiation by transforming growth factor-beta, insulin-like growth factor I, and fibroblast growth factor. J Cell Physiol 138:311–315
Article CAS PubMed Google Scholar
Antoniou A, Mastroyiannopoulos NP, Uney JB, Phylactou LA (2014) miR-186 inhibits muscle cell differentiation through myogenin regulation. J Biol Chem 289:3923–3935
Article CAS PubMed PubMed Central Google Scholar
Asfour HA, Allouh MZ, Said RS (2018) Myogenic regulatory factors: the orchestrators of myogenesis after 30 years of discovery. Exp Biol Med (maywood) 243:118–128
Article CAS PubMed Google Scholar
Azlan A, Dzaki N, Azzam G (2016) Argonaute: the executor of small RNA function. J Genet Genomics 43:481–494
Article CAS PubMed Google Scholar
Bach LA, Salemi R, Leeding KS (1995) Roles of insulin-like growth factor (IGF) receptors and IGF-binding proteins in IGF-II-induced proliferation and differentiation of L6A1 rat myoblasts. Endocrinology 136:5061–5069
Article CAS PubMed Google Scholar
Baghdadi MB, Castel D, Machado L, Fukada SI, Birk DE, Relaix F, Tajbakhsh S, Mourikis P (2018a) Reciprocal signalling by Notch-Collagen V-CALCR retains muscle stem cells in their niche. Nature 557:714–718
Article CAS PubMed PubMed Central Google Scholar
Baghdadi MB, Firmino J, Soni K, Evano B, Di Girolamo D, Mourikis P, Castel D, Tajbakhsh S (2018b) Notch-Induced miR-708 antagonizes satellite cell migration and maintains quiescence. Cell Stem Cell 23(859–868):e855
Baracos VE, Martin L, Korc M, Guttridge DC, Fearon KCH (2018) Cancer-associated Cachexia. Nat Rev Dis Primers 4:17105
Beauchamp P, Nassif C, Hillock S, van der Giessen K, von Roretz C, Jasmin BJ, Gallouzi IE (2010) The cleavage of HuR interferes with its transportin-2-mediated nuclear import and promotes muscle fiber formation. Cell Death Differ 17:1588–1599
Article CAS PubMed Google Scholar
Bisbal C, Silhol M, Laubenthal H, Kaluza T, Carnac G, Milligan L, Le Roy F, Salehzada T (2000) The 2’-5’ oligoadenylate/RNase L/RNase L inhibitor pathway regulates both MyoD mRNA stability and muscle cell differentiation. Mol Cell Biol 20:4959–4969
Article CAS PubMed PubMed Central Google Scholar
Black BL, Molkentin JD, Olson EN (1998) Multiple roles for the MyoD basic region in transmission of transcriptional activation signals and interaction with MEF2. Mol Cell Biol 18:69–77
Article CAS PubMed PubMed Central Google Scholar
Bober E, Lyons GE, Braun T, Cossu G, Buckingham M, Arnold HH (1991) The muscle regulatory gene, Myf-6, has a biphasic pattern of expression during early mouse development. J Cell Biol 113:1255–1265
Article CAS PubMed Google Scholar
Borensztein M, Monnier P, Court F, Louault Y, Ripoche MA, Tiret L, Yao Z, Tapscott SJ, Forne T, Montarras D, Dandolo L (2013) Myod and H19-Igf2 locus interactions are required for diaphragm formation in the mouse. Development 140:1231–1239
Article CAS PubMed PubMed Central Google Scholar
Braun T, Arnold HH (1995) Inactivation of Myf-6 and Myf-5 genes in mice leads to alterations in skeletal muscle development. Embo J 14:1176–1186
Article CAS PubMed PubMed Central Google Scholar
Braun T, Buschhausen-Denker G, Bober E, Tannich E, Arnold HH (1989) A novel human muscle factor related to but distinct from MyoD1 induces myogenic conversion in 10T1/2 fibroblasts. Embo J 8:701–709
Article CAS PubMed PubMed Central Google Scholar
Braun T, Rudnicki MA, Arnold HH, Jaenisch R (1992) Targeted inactivation of the muscle regulatory gene Myf-5 results in abnormal rib development and perinatal death. Cell 71:369–382
Article CAS PubMed Google Scholar
Buckingham M (1992) Making muscle in mammals. Trends Genet 8:144–148
Article CAS PubMed Google Scholar
Buckingham M, Rigby PW (2014) Gene regulatory networks and transcriptional mechanisms that control myogenesis. Dev Cell 28:225–238
Article CAS PubMed Google Scholar
Bushby K, Finkel R, Birnkrant DJ, Case LE, Clemens PR, Cripe L, Kaul A, Kinnett K, McDonald C, Pandya S, Poysky J, Shapiro F, Tomezsko J, Constantin, Group, D.M.D.C.C.W. (2010) Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and pharmacological and psychosocial management. Lancet Neurol 9:77–93
Cacchiarelli D, Legnini I, Martone J, Cazzella V, D’Amico A, Bertini E, Bozzoni I (2011) miRNAs as serum biomarkers for Duchenne muscular dystrophy. EMBO Mol Med 3:258–265
Article CAS PubMed PubMed Central Google Scholar
Callis TE, Pandya K, Seok HY, Tang RH, Tatsuguchi M, Huang ZP, Chen JF, Deng Z, Gunn B, Shumate J, Willis MS, Selzman CH, Wang DZ (2009) MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. J Clin Invest 119:2772–2786
Article CAS PubMed PubMed Central Google Scholar
Campos AR, Grossman D, White K (1985) Mutant alleles at the locus elav in Drosophila melanogaster lead to nervous system defects. A Develop-Genetic Anal J Neurogenet 2:197–218
Cardinali B, Cappella M, Provenzano C, Garcia-Manteiga JM, Lazarevic D, Cittaro D, Martelli F, Falcone G (2016) MicroRNA-222 regulates muscle alternative splicing through Rbm24 during differentiation of skeletal muscle cells. Cell Death Dis 7:e2086
Article CAS PubMed PubMed Central Google Scholar
Caretti G, Schiltz RL, Dilworth FJ, Di Padova M, Zhao P, Ogryzko V, Fuller-Pace FV, Hoffman EP, Tapscott SJ, Sartorelli V (2006) The RNA helicases p68/p72 and the noncoding RNA SRA are coregulators of MyoD and skeletal muscle differentiation. Dev Cell 11:547–560
Article CAS PubMed Google Scholar
Castel D, Baghdadi MB, Mella S, Gayraud-Morel B, Marty V, Cavaille J, Antoniewski C, Tajbakhsh S (2018) Small-RNA sequencing identifies dynamic microRNA deregulation during skeletal muscle lineage progression. Sci Rep 8:4208
Article PubMed PubMed Central Google Scholar
Chen JF, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM, Conlon FL, Wang DZ (2006) The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet 38:228–233
Article CAS PubMed Google Scholar
Cheung TH, Quach NL, Charville GW, Liu L, Park L, Edalati A, Yoo B, Hoang P, Rando TA (2012) Maintenance of muscle stem-cell quiescence by microRNA-489. Nature 482:524–528
Article CAS PubMed PubMed Central Google Scholar
Chikenji A, Ando H, Nariyama M, Suga T, Iida R, Gomi K (2016) MyoD is regulated by the miR-29a-Tet1 pathway in C2C12 myoblast cells. J Oral Sci 58:219–229
Article CAS PubMed Google Scholar
Coenen-Stass AML, Sork H, Gatto S, Godfrey C, Bhomra A, Krjutskov K, Hart JR, Westholm JO, O’Donovan L, Roos A, Lochmuller H, Puri PL, El Andaloussi S, Wood MJA, Roberts TC (2018) Comprehensive RNA-sequencing analysis in serum and muscle reveals novel small RNA signatures with biomarker potential for DMD. Mol Ther Nucleic Acids 13:1–15
Article CAS PubMed PubMed Central Google Scholar
Coolican SA, Samuel DS, Ewton DZ, McWade FJ, Florini JR (1997) The mitogenic and myogenic actions of insulin-like growth factors utilize distinct signaling pathways. J Biol Chem 272:6653–6662
Article CAS PubMed Google Scholar
Crippa S, Cassano M, Messina G, Galli D, Galvez BG, Curk T, Altomare C, Ronzoni F, Toelen J, Gijsbers R, Debyser Z, Janssens S, Zupan B, Zaza A, Cossu G, Sampaolesi M (2011) miR669a and miR669q prevent skeletal muscle differentiation in postnatal cardiac progenitors. J Cell Biol 193:1197–1212
Article CAS PubMed PubMed Central Google Scholar
Crist CG, Montarras D, Pallafacchina G, Rocancourt D, Cumano A, Conway SJ, Buckingham M (2009) Muscle stem cell behavior is modified by microRNA-27 regulation of Pax3 expression. Proc Natl Acad Sci U S A 106:13383–13387
Article CAS PubMed PubMed Central Google Scholar
Crist CG, Montarras D, Buckingham M (2012) Muscle satellite cells are primed for myogenesis but maintain quiescence with sequestration of Myf5 mRNA targeted by microRNA-31 in mRNP granules. Cell Stem Cell 11:118–126
Article CAS PubMed Google Scholar
Davis RL, Weintraub H, Lassar AB (1987) Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51:987–1000
Article CAS PubMed Google Scholar
de Morree A, van Velthoven CTJ, Gan Q, Salvi JS, Klein JDD, Akimenko I, Quarta M, Biressi S, Rando TA (2017) Staufen1 inhibits MyoD translation to actively maintain muscle stem cell quiescence. Proc Natl Acad Sci U S A 114:E8996–E9005
留言 (0)