Enduring effects of acute prenatal ischemia in rat soleus muscle, and protective role of erythropoietin

Baker JM, Parise G (2016) Skeletal muscle erythropoietin expression is responsive to Hypoxia and Exercise. Med Sci Sports Exerc 48(7):1294–1301. https://doi.org/10.1249/mss.0000000000000899

Article  CAS  PubMed  Google Scholar 

Baker JM, De Lisio M, Parise G (2011) Endurance exercise training promotes medullary hematopoiesis. Faseb j 25(12):4348–4357. https://doi.org/10.1096/fj.11-189043

Article  CAS  PubMed  Google Scholar 

Bond WS, Rex TS (2014) Evidence that erythropoietin modulates neuroinflammation through Differential Action on neurons, astrocytes, and Microglia. Front Immunol 5:523. https://doi.org/10.3389/fimmu.2014.00523

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bourque SL, Gragasin FS, Quon AL, Mansour Y, Morton JS, Davidge ST (2013) Prenatal hypoxia causes long-term alterations in vascular endothelin-1 function in aged male, but not female, offspring. Hypertension (Dallas, Tex: 1979) 62 (4):753–758. https://doi.org/10.1161/hypertensionaha.113.01516

Calvillo L, Latini R, Kajstura J, Leri A, Anversa P, Ghezzi P, Salio M, Cerami A, Brines M (2003) Recombinant human erythropoietin protects the myocardium from ischemia-reperfusion injury and promotes beneficial remodeling. Proc Natl Acad Sci U S A 100(8):4802–4806. https://doi.org/10.1073/pnas.0630444100

Article  CAS  PubMed  PubMed Central  Google Scholar 

Canu MH, Fourneau J, Coq JO, Dannhoffer L, Cieniewski-Bernard C, Stevens L, Bastide B, Dupont E (2019) Interplay between hypoactivity, muscle properties and motor command: how to escape the vicious deconditioning circle? Annals of physical and rehabilitation medicine 62. 2122–127. https://doi.org/10.1016/j.rehab.2018.09.009

Carraway MS, Suliman HB, Jones WS, Chen CW, Babiker A, Piantadosi CA (2010) Erythropoietin activates mitochondrial biogenesis and couples red cell mass to mitochondrial mass in the heart. Circ Res 106:1722–1730. https://doi.org/10.1161/CIRCRESAHA.109.214353

Article  CAS  PubMed  PubMed Central  Google Scholar 

Coq JO, Delcour M, Ogawa Y, Peyronnet J, Castets F, Turle-Lorenzo N, Montel V, Bodineau L, Cardot P, Brocard C, Liabeuf S, Bastide B, Canu MH, Tsuji M, Cayetanot F (2018) Mild Intrauterine Hypoperfusion leads to lumbar and cortical hyperexcitability, spasticity, and muscle dysfunctions in rats: implications for Prematurity. Front Neurol 9:423. https://doi.org/10.3389/fneur.2018.00423

Article  PubMed  PubMed Central  Google Scholar 

Delp MD, Duan C (1996) Composition and size of type I, IIA, IID/X, and IIB fibers and citrate synthase activity of rat muscle. J Appl Physiol (1985) 80:261–270. https://doi.org/10.1152/jappl.1996.80.1.261

Article  CAS  PubMed  Google Scholar 

Dupuis O, Van Gaever M, Montel V, Dereumetz J, Coq JO, Canu MH, Dupont E (2024) Early movement restriction affects the acquisition of neurodevelopmental reflexes in rat pups. Brain Res. 2024;1828:148773. https://doi.org/10.1016/j.brainres.2024.148773

Gokhin DS, Ward SR, Bremner SN, Lieber RL (2008) Quantitative analysis of neonatal skeletal muscle functional improvement in the mouse. J Exp Biol 211:837–843. https://doi.org/10.1242/jeb.014340

Article  CAS  PubMed  Google Scholar 

Haase VH (2013) Regulation of erythropoiesis by hypoxia-inducible factors. Blood Rev 27(1):41–53. https://doi.org/10.1016/j.blre.2012.12.003

Article  CAS  PubMed  PubMed Central  Google Scholar 

Handsfield GG, Williams S, Khuu S, Lichtwark G, Stott NS (2022) Muscle architecture, growth, and biological remodelling in cerebral palsy: a narrative review. BMC Musculoskelet Disord 23(1):233. https://doi.org/10.1186/s12891-022-05110-5

Article  PubMed  PubMed Central  Google Scholar 

Hernández CC, Burgos CF, Gajardo AH, Silva-Grecchi T, Gavilan J, Toledo JR, Fuentealba J (2017) Neuroprotective effects of erythropoietin on neurodegenerative and ischemic brain diseases: the role of erythropoietin receptor. Neural Regeneration Res 12(9):1381–1389. https://doi.org/10.4103/1673-5374.215240

Article  CAS  Google Scholar 

Howard JJ, Herzog W (2021) Skeletal muscle in cerebral palsy: from Belly to Myofibril. Front Neurol 12:620852. https://doi.org/10.3389/fneur.2021.620852

Article  PubMed  PubMed Central  Google Scholar 

Hutter D, Kingdom J, Jaeggi E (2010) Causes and mechanisms of intrauterine hypoxia and its impact on the fetal cardiovascular system: a review. Int J Pediatr 2010(401323). https://doi.org/10.1155/2010/401323

Iwai M, Cao G, Yin W, Stetler RA, Liu J, Chen J (2007) Erythropoietin promotes neuronal replacement through revascularization and neurogenesis after neonatal hypoxia/ischemia in rats. Stroke 38(10):2795–2803. https://doi.org/10.1161/STROKEAHA.107.483008

Article  CAS  PubMed  Google Scholar 

Jantzie LL, Miller RH, Robinson S Erythropoietin signaling promotes oligodendrocyte development following prenatal systemic hypoxic-ischemic brain injury. Pediatr Res. 2013 Dec;74(6):658-67. https://doi.org/10.1038/pr.2013.155

Jantzie LL, Winer JL, Corbett CJ, Robinson S (2016) Erythropoietin modulates cerebral and serum degradation products from excess calpain activation following prenatal hypoxia-ischemia. Dev Neurosci 38(1):15–26. https://doi.org/10.1159/000441024

Article  CAS  PubMed  Google Scholar 

Jensen A, Garnier Y, Berger R (1999) Dynamics of fetal circulatory responses to hypoxia and asphyxia. Eur J Obstet Gynecol Reproductive Biology 84:155–172

Article  CAS  Google Scholar 

Joshi D, Tsui J, Ho TK, Selvakumar S, Abraham DJ, Baker DM (2010) Review of the role of erythropoietin in critical leg ischemia. Angiology 61(6):541–550. https://doi.org/10.1177/0003319709358697

Article  CAS  PubMed  Google Scholar 

Kirkeby A, van Beek J, Nielsen J, Leist M, Helboe L (2007) Functional and immunochemical characterisation of different antibodies against the erythropoietin receptor. J Neurosci Methods 164(1):50–58. https://doi.org/10.1016/j.jneumeth.2007.03.026

Article  CAS  PubMed  Google Scholar 

Krock BL, Skuli N, Simon MC (2011) Hypoxia-induced angiogenesis: good and evil. Genes cancer 2(12):1117–1133. https://doi.org/10.1177/1947601911423654

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lamon S, Russell AP (2013) The role and regulation of erythropoietin (EPO) and its receptor in skeletal muscle: how much do we really know? Front Physiol 4:176. https://doi.org/10.3389/fphys.2013.00176

Article  PubMed  PubMed Central  Google Scholar 

Lan KM, Tien LT, Cai Z, Lin S, Pang Y, Tanaka S, Rhodes PG, Bhatt AJ, Savich RD, Fan LW (2016) Erythropoietin ameliorates neonatal Hypoxia-Ischemia-Induced Neurobehavioral deficits, Neuroinflammation, and hippocampal Injury in the juvenile rat. Int J Mol Sci 17(3):289. https://doi.org/10.3390/ijms17030289

Article  CAS  PubMed  PubMed Central  Google Scholar 

Larpthaveesarp A, Pathipati P, Ostrin S, Rajah A, Ferriero D, Gonzalez FF (2021) Enhanced mesenchymal stromal cells or erythropoietin provide long-term Functional Benefit after neonatal stroke. Stroke 52(1):284–293. https://doi.org/10.1161/strokeaha.120.031191

Article  CAS  PubMed  Google Scholar 

Lin J, Wu H, Tarr PT, Zhang CY, Wu Z, Boss O, Michael LF, Puigserver P, Isotani E, Olson EN, Lowell BB, Bassel-Duby R, Spiegelman BM (2002) Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature 418:797–801. https://doi.org/10.1038/nature00904

Article  CAS  PubMed  Google Scholar 

Mayeuf-Louchart A, Hardy D, Thorel Q, Roux P, Gueniot L, Briand D, Mazeraud A, Bougle A, Shorte SL, Staels B, Chretien F, Duez H, Danckaert A (2018) MuscleJ: a high-content analysis method to study skeletal muscle with a new Fiji tool. Skelet Muscle 8(1):25. https://doi.org/10.1186/s13395-018-0171-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mazur M, Miller R, Robinson S (2010) Postnatal erythropoietin treatment mitigates neural cell loss after systemic prenatal hypoxic-ischemic injury. J Neurosurg Pediatr 6(3):206–221. https://doi.org/10.3171/2010.5.PEDS1032

Article  PubMed  PubMed Central  Google Scholar 

McIntyre S, Taitz D, Keogh J, Goldsmith S, Badawi N, Blair E (2013) A systematic review of risk factors for cerebral palsy in children born at term in developed countries. Dev Med Child Neurol 55(6):499–508. https://doi.org/10.1111/dmcn.12017

Article  PubMed  Google Scholar 

Miyata Y, Sagara Y, Watanabe S, Asai A, Matsuo T, Ohba K, Hayashi T, Sakai H (2013) CD105 is a more appropriate marker for evaluating angiogenesis in urothelial cancer of the upper urinary tract than CD31 or CD34. Virchows Archiv: Int J Pathol 463(5):673–679. https://doi.org/10.1007/s00428-013-1463-8

留言 (0)

沒有登入
gif