Baker JM, Parise G (2016) Skeletal muscle erythropoietin expression is responsive to Hypoxia and Exercise. Med Sci Sports Exerc 48(7):1294–1301. https://doi.org/10.1249/mss.0000000000000899
Article CAS PubMed Google Scholar
Baker JM, De Lisio M, Parise G (2011) Endurance exercise training promotes medullary hematopoiesis. Faseb j 25(12):4348–4357. https://doi.org/10.1096/fj.11-189043
Article CAS PubMed Google Scholar
Bond WS, Rex TS (2014) Evidence that erythropoietin modulates neuroinflammation through Differential Action on neurons, astrocytes, and Microglia. Front Immunol 5:523. https://doi.org/10.3389/fimmu.2014.00523
Article CAS PubMed PubMed Central Google Scholar
Bourque SL, Gragasin FS, Quon AL, Mansour Y, Morton JS, Davidge ST (2013) Prenatal hypoxia causes long-term alterations in vascular endothelin-1 function in aged male, but not female, offspring. Hypertension (Dallas, Tex: 1979) 62 (4):753–758. https://doi.org/10.1161/hypertensionaha.113.01516
Calvillo L, Latini R, Kajstura J, Leri A, Anversa P, Ghezzi P, Salio M, Cerami A, Brines M (2003) Recombinant human erythropoietin protects the myocardium from ischemia-reperfusion injury and promotes beneficial remodeling. Proc Natl Acad Sci U S A 100(8):4802–4806. https://doi.org/10.1073/pnas.0630444100
Article CAS PubMed PubMed Central Google Scholar
Canu MH, Fourneau J, Coq JO, Dannhoffer L, Cieniewski-Bernard C, Stevens L, Bastide B, Dupont E (2019) Interplay between hypoactivity, muscle properties and motor command: how to escape the vicious deconditioning circle? Annals of physical and rehabilitation medicine 62. 2122–127. https://doi.org/10.1016/j.rehab.2018.09.009
Carraway MS, Suliman HB, Jones WS, Chen CW, Babiker A, Piantadosi CA (2010) Erythropoietin activates mitochondrial biogenesis and couples red cell mass to mitochondrial mass in the heart. Circ Res 106:1722–1730. https://doi.org/10.1161/CIRCRESAHA.109.214353
Article CAS PubMed PubMed Central Google Scholar
Coq JO, Delcour M, Ogawa Y, Peyronnet J, Castets F, Turle-Lorenzo N, Montel V, Bodineau L, Cardot P, Brocard C, Liabeuf S, Bastide B, Canu MH, Tsuji M, Cayetanot F (2018) Mild Intrauterine Hypoperfusion leads to lumbar and cortical hyperexcitability, spasticity, and muscle dysfunctions in rats: implications for Prematurity. Front Neurol 9:423. https://doi.org/10.3389/fneur.2018.00423
Article PubMed PubMed Central Google Scholar
Delp MD, Duan C (1996) Composition and size of type I, IIA, IID/X, and IIB fibers and citrate synthase activity of rat muscle. J Appl Physiol (1985) 80:261–270. https://doi.org/10.1152/jappl.1996.80.1.261
Article CAS PubMed Google Scholar
Dupuis O, Van Gaever M, Montel V, Dereumetz J, Coq JO, Canu MH, Dupont E (2024) Early movement restriction affects the acquisition of neurodevelopmental reflexes in rat pups. Brain Res. 2024;1828:148773. https://doi.org/10.1016/j.brainres.2024.148773
Gokhin DS, Ward SR, Bremner SN, Lieber RL (2008) Quantitative analysis of neonatal skeletal muscle functional improvement in the mouse. J Exp Biol 211:837–843. https://doi.org/10.1242/jeb.014340
Article CAS PubMed Google Scholar
Haase VH (2013) Regulation of erythropoiesis by hypoxia-inducible factors. Blood Rev 27(1):41–53. https://doi.org/10.1016/j.blre.2012.12.003
Article CAS PubMed PubMed Central Google Scholar
Handsfield GG, Williams S, Khuu S, Lichtwark G, Stott NS (2022) Muscle architecture, growth, and biological remodelling in cerebral palsy: a narrative review. BMC Musculoskelet Disord 23(1):233. https://doi.org/10.1186/s12891-022-05110-5
Article PubMed PubMed Central Google Scholar
Hernández CC, Burgos CF, Gajardo AH, Silva-Grecchi T, Gavilan J, Toledo JR, Fuentealba J (2017) Neuroprotective effects of erythropoietin on neurodegenerative and ischemic brain diseases: the role of erythropoietin receptor. Neural Regeneration Res 12(9):1381–1389. https://doi.org/10.4103/1673-5374.215240
Howard JJ, Herzog W (2021) Skeletal muscle in cerebral palsy: from Belly to Myofibril. Front Neurol 12:620852. https://doi.org/10.3389/fneur.2021.620852
Article PubMed PubMed Central Google Scholar
Hutter D, Kingdom J, Jaeggi E (2010) Causes and mechanisms of intrauterine hypoxia and its impact on the fetal cardiovascular system: a review. Int J Pediatr 2010(401323). https://doi.org/10.1155/2010/401323
Iwai M, Cao G, Yin W, Stetler RA, Liu J, Chen J (2007) Erythropoietin promotes neuronal replacement through revascularization and neurogenesis after neonatal hypoxia/ischemia in rats. Stroke 38(10):2795–2803. https://doi.org/10.1161/STROKEAHA.107.483008
Article CAS PubMed Google Scholar
Jantzie LL, Miller RH, Robinson S Erythropoietin signaling promotes oligodendrocyte development following prenatal systemic hypoxic-ischemic brain injury. Pediatr Res. 2013 Dec;74(6):658-67. https://doi.org/10.1038/pr.2013.155
Jantzie LL, Winer JL, Corbett CJ, Robinson S (2016) Erythropoietin modulates cerebral and serum degradation products from excess calpain activation following prenatal hypoxia-ischemia. Dev Neurosci 38(1):15–26. https://doi.org/10.1159/000441024
Article CAS PubMed Google Scholar
Jensen A, Garnier Y, Berger R (1999) Dynamics of fetal circulatory responses to hypoxia and asphyxia. Eur J Obstet Gynecol Reproductive Biology 84:155–172
Joshi D, Tsui J, Ho TK, Selvakumar S, Abraham DJ, Baker DM (2010) Review of the role of erythropoietin in critical leg ischemia. Angiology 61(6):541–550. https://doi.org/10.1177/0003319709358697
Article CAS PubMed Google Scholar
Kirkeby A, van Beek J, Nielsen J, Leist M, Helboe L (2007) Functional and immunochemical characterisation of different antibodies against the erythropoietin receptor. J Neurosci Methods 164(1):50–58. https://doi.org/10.1016/j.jneumeth.2007.03.026
Article CAS PubMed Google Scholar
Krock BL, Skuli N, Simon MC (2011) Hypoxia-induced angiogenesis: good and evil. Genes cancer 2(12):1117–1133. https://doi.org/10.1177/1947601911423654
Article CAS PubMed PubMed Central Google Scholar
Lamon S, Russell AP (2013) The role and regulation of erythropoietin (EPO) and its receptor in skeletal muscle: how much do we really know? Front Physiol 4:176. https://doi.org/10.3389/fphys.2013.00176
Article PubMed PubMed Central Google Scholar
Lan KM, Tien LT, Cai Z, Lin S, Pang Y, Tanaka S, Rhodes PG, Bhatt AJ, Savich RD, Fan LW (2016) Erythropoietin ameliorates neonatal Hypoxia-Ischemia-Induced Neurobehavioral deficits, Neuroinflammation, and hippocampal Injury in the juvenile rat. Int J Mol Sci 17(3):289. https://doi.org/10.3390/ijms17030289
Article CAS PubMed PubMed Central Google Scholar
Larpthaveesarp A, Pathipati P, Ostrin S, Rajah A, Ferriero D, Gonzalez FF (2021) Enhanced mesenchymal stromal cells or erythropoietin provide long-term Functional Benefit after neonatal stroke. Stroke 52(1):284–293. https://doi.org/10.1161/strokeaha.120.031191
Article CAS PubMed Google Scholar
Lin J, Wu H, Tarr PT, Zhang CY, Wu Z, Boss O, Michael LF, Puigserver P, Isotani E, Olson EN, Lowell BB, Bassel-Duby R, Spiegelman BM (2002) Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature 418:797–801. https://doi.org/10.1038/nature00904
Article CAS PubMed Google Scholar
Mayeuf-Louchart A, Hardy D, Thorel Q, Roux P, Gueniot L, Briand D, Mazeraud A, Bougle A, Shorte SL, Staels B, Chretien F, Duez H, Danckaert A (2018) MuscleJ: a high-content analysis method to study skeletal muscle with a new Fiji tool. Skelet Muscle 8(1):25. https://doi.org/10.1186/s13395-018-0171-0
Article CAS PubMed PubMed Central Google Scholar
Mazur M, Miller R, Robinson S (2010) Postnatal erythropoietin treatment mitigates neural cell loss after systemic prenatal hypoxic-ischemic injury. J Neurosurg Pediatr 6(3):206–221. https://doi.org/10.3171/2010.5.PEDS1032
Article PubMed PubMed Central Google Scholar
McIntyre S, Taitz D, Keogh J, Goldsmith S, Badawi N, Blair E (2013) A systematic review of risk factors for cerebral palsy in children born at term in developed countries. Dev Med Child Neurol 55(6):499–508. https://doi.org/10.1111/dmcn.12017
Miyata Y, Sagara Y, Watanabe S, Asai A, Matsuo T, Ohba K, Hayashi T, Sakai H (2013) CD105 is a more appropriate marker for evaluating angiogenesis in urothelial cancer of the upper urinary tract than CD31 or CD34. Virchows Archiv: Int J Pathol 463(5):673–679. https://doi.org/10.1007/s00428-013-1463-8
留言 (0)