Rbm24-mediated post-transcriptional regulation of skeletal and cardiac muscle development, function and regeneration

Afroz T, Cienikova Z, Cléry A, Allain FHT (2015) One, two, three, four! How multiple RRMs read the genome sequence. Methods Enzymol 558:235–278. https://doi.org/10.1016/bs.mie.2015.01.015

Article  PubMed  CAS  Google Scholar 

Agaram NP, LaQuaglia MP, Alaggio R, Zhang L, Fujisawa Y, Ladanyi M, Wexler LH, Antonescu CR (2019) MYOD1-mutant spindle cell and sclerosing rhabdomyosarcoma: an aggressive subtype irrespective of age. A reappraisal for molecular classification and risk stratification. Mod Pathol 32:27–36. https://doi.org/10.1038/s41379-018-0120-9

Article  PubMed  CAS  Google Scholar 

Anyanful A, Ono K, Johnsen RC, Ly H, Jensen VL, Baillie DL, Ono S (2004) The RNA-binding protein SUP-12 controls muscle-specific splicing of the ADF/cofilin pre-mRNA in C. Elegans. J Cell Biol 167:639–647. https://doi.org/10.1083/jcb.200407085

Article  PubMed  PubMed Central  CAS  Google Scholar 

Bakkers J (2011) Zebrafish as a model to study cardiac development and human cardiac disease. Cardiovasc Res 91:279–288. https://doi.org/10.1093/cvr/cvr098

Article  PubMed  PubMed Central  CAS  Google Scholar 

Blech-Hermoni Y, Ladd AN (2013) RNA binding proteins in the regulation of heart development. Int J Biochem Cell Biol 45:2467–2478. https://doi.org/10.1016/j.biocel.2013.08.008

Article  PubMed  PubMed Central  CAS  Google Scholar 

Brauch KM, Karst ML, Herron KJ, De Andrade M, Pellikka PA, Rodeheffer RJ, Michels VV, Olson TM (2009) Mutations in ribonucleic acid binding protein gene cause familial dilated cardiomyopathy. J Am Coll Cardiol 54:930–941. https://doi.org/10.1016/j.jacc.2009.05.038

Article  PubMed  PubMed Central  CAS  Google Scholar 

Brezitski KD, Goff AW, DeBenedittis P, Karra R (2021) A roadmap to heart regeneration through conserved mechanisms in zebrafish and mammals. Curr Cardiol Rep 23:29. https://doi.org/10.1007/s11886-021-01459-6

Article  PubMed  PubMed Central  Google Scholar 

Buckingham M (2006) Myogenic progenitor cells and skeletal myogenesis in vertebrates. Curr Opin Genet Dev 16:525–532. https://doi.org/10.1016/j.gde.2006.08.008

Article  PubMed  CAS  Google Scholar 

Buckingham M, Meilhac S, Zaffran S (2005) Building the mammalian heart from two sources of myocardial cells. Nat Rev Genet 6:826–835. https://doi.org/10.1038/nrg1710

Article  PubMed  CAS  Google Scholar 

Cardinali B, Cappella M, Provenzano C, Garcia-Manteiga JM, Lazarevic D, Cittaro D, Martelli F, Falcone G (2016) MicroRNA-222 regulates muscle alternative splicing through Rbm24 during differentiation of skeletal muscle cells. Cell Death Dis 7:e2086. https://doi.org/10.1038/cddis.2016.10

Article  PubMed  PubMed Central  CAS  Google Scholar 

Chal J, Pourquié O (2017) Making muscle: skeletal myogenesis in vivo and in vitro. Development 144:2104–2122. https://doi.org/10.1242/dev.151035

Article  PubMed  CAS  Google Scholar 

Charlesworth A, Meijer HA, de Moor CH (2013) Specificity factors in cytoplasmic polyadenylation. Wiley Interdiscip Rev RNA 4:437–461. https://doi.org/10.1002/wrna.1171

Article  PubMed  PubMed Central  CAS  Google Scholar 

Cheng X, Zhang JJ, Shi DL (2020) Loss of Rbm24a causes defective hair cell development in the zebrafish inner ear and neuromasts. J Genet Genomics 47:403–406. https://doi.org/10.1016/j.jgg.2020.07.002

Article  PubMed  CAS  Google Scholar 

Chorghade S, Seimetz J, Emmons R, Yang J, Bresson SM, Lisio M, Parise G, Conrad NK, Kalsotra A (2017) Poly(A) tail length regulates PABPC1 expression to tune translation in the heart. Elife 6:e24139. https://doi.org/10.7554/eLife.24139

Article  PubMed  PubMed Central  Google Scholar 

Christoffels V, Jensen B (2020) Cardiac morphogenesis: specification of the four-chambered heart. Cold Spring Harb Perspect Biol 12:a037143. https://doi.org/10.1101/cshperspect.a037143

Article  PubMed  PubMed Central  CAS  Google Scholar 

Cornelius VA, Naderi-Meshkin H, Kelaini S, Margariti A (2022) RNA-binding proteins: emerging therapeutics for vascular dysfunction. Cells 11:2494. https://doi.org/10.3390/cells11162494

Article  PubMed  PubMed Central  CAS  Google Scholar 

D’Antonio M, Nguyen JP, Arthur TD, Matsui H, Donovan MKR, D’Antonio-Chronowska A, Frazer KA (2022) In heart failure reactivation of RNA-binding proteins is associated with the expression of 1,523 fetal-specific isoforms. PLoS Comput Biol 18:e1009918. https://doi.org/10.1371/journal.pcbi.1009918

Article  PubMed  PubMed Central  CAS  Google Scholar 

de Bruin RG, Rabelink TJ, van Zonneveld AJ, van der Veer EP (2017) Emerging roles for RNA-binding proteins as effectors and regulators of cardiovascular disease. Eur Heart J 38:1380–1388. https://doi.org/10.1093/eurheartj/ehw567

Article  PubMed  CAS  Google Scholar 

de Groot NE, van den Hoogenhof MMG, Najafi A, van der Made I, van der Velden J, Beqqali A, Pinto YM, Creemers EE (2020) Heterozygous loss of Rbm24 in the adult mouse heart increases sarcomere slack length but does not affect function. Sci Rep 10:7687. https://doi.org/10.1038/s41598-020-64667-0

Article  PubMed  PubMed Central  CAS  Google Scholar 

de Wit L, Fang J, Neef K, Xiao J, Doevendans PA, Schiffelers RM, Lei Z, Sluijter JPG (2020) Cellular and molecular mechanism of cardiac regeneration: a comparison of newts, zebrafish, and mammals. Biomolecules 10:1204. https://doi.org/10.3390/biom10091204

Article  PubMed  PubMed Central  CAS  Google Scholar 

Donadon M, Santoro MM (2021) The origin and mechanisms of smooth muscle cell development in vertebrates. Development 148:dev197384. https://doi.org/10.1242/dev.197384

Article  PubMed  CAS  Google Scholar 

Eldemire R, Tharp CA, Taylor MRG, Sbaizero O, Mestroni L (2021) The sarcomeric spring protein titin: biophysical properties, molecular mechanisms, and genetic mutations associated with heart failure and cardiomyopathy. Curr Cardiol Rep 23:121. https://doi.org/10.1007/s11886-021-01550-y

Article  PubMed  PubMed Central  Google Scholar 

Fetka I, Radeghieri A, Bouwmeester T (2000a) Expression of the RNA recognition motif-containing protein SEB-4 during Xenopus embryonic development. Mech Dev 94:283–286. https://doi.org/10.1016/s0925-4773(00)00284-7

Article  PubMed  CAS  Google Scholar 

Fetka I, Doederlein G, Bouwmeester T (2000b) Neuroectodermal specification and regionalization of the Spemann organizer in Xenopus. Mech Dev 93:49–58. https://doi.org/10.1016/s0925-4773(00)00265-3

Article  PubMed  CAS  Google Scholar 

Gaertner A, Brodehl A, Milting H (2019) Screening for mutations in human cardiomyopathy- is RBM24 a new but rare disease gene? Protein Cell 10:393–394. https://doi.org/10.1007/s13238-018-0590-z

Article  PubMed  Google Scholar 

Gebauer F, Schwarzl T, Valcárcel J, Hentze MW (2021) RNA-binding proteins in human genetic disease. Nat Rev Genet 22:185–198. https://doi.org/10.1038/s41576-020-00302-y

Article  PubMed  CAS  Google Scholar 

Glisovic T, Bachorik JL, Yong J, Dreyfuss G (2008) RNA-binding proteins and post-transcriptional gene regulation. FEBS Lett 582:1977–1986. https://doi.org/10.1016/j.febslet.2008.03.004

Article 

留言 (0)

沒有登入
gif