Effects of membrane cholesterol-targeting chemicals on skeletal muscle contractions evoked by direct and indirect stimulation

Barrientos G, Llanos P, Hidalgo J, Bolanos P, Caputo C, Riquelme A, Sanchez G, Quest AF, Hidalgo C (2015) Cholesterol removal from adult skeletal muscle impairs excitation-contraction coupling and aging reduces caveolin-3 and alters the expression of other triadic proteins. Front Physiol 6:105. https://doi.org/10.3389/fphys.2015.00105

Article  PubMed  PubMed Central  Google Scholar 

Binotti B, Jahn R, Perez-Lara A (2021) An overview of the synaptic vesicle lipid composition. Arch Biochem Biophys 709:108966. https://doi.org/10.1016/j.abb.2021.108966

Article  CAS  PubMed  Google Scholar 

Bouitbir J, Sanvee GM, Panajatovic MV, Singh F, Krahenbuhl S (2020) Mechanisms of statin-associated skeletal muscle-associated symptoms. Pharmacol Res 154:104201. https://doi.org/10.1016/j.phrs.2019.03.010

Article  CAS  PubMed  Google Scholar 

Bryndina IG, Shalagina MN, Sekunov AV, Zefirov AL, Petrov AM (2018) Clomipramine counteracts lipid raft disturbance due to short-term muscle disuse. Neurosci Lett 664:1–6. https://doi.org/10.1016/j.neulet.2017.11.009

Article  CAS  PubMed  Google Scholar 

Chevessier F, Peter C, Mersdorf U, Girard E, Krejci E, McArdle JJ, Witzemann V (2012) A new mouse model for the slow-channel congenital myasthenic syndrome induced by the AChR epsilonL221F mutation. Neurobiol Dis 45(3):851–861. https://doi.org/10.1016/j.nbd.2011.10.024

Article  CAS  PubMed  Google Scholar 

Crouse JR, Grundy SM, Ahrens EH Jr. (1972) Cholesterol distribution in the bulk tissues of man: variation with age. J Clin Invest 51(5):1292–1296. https://doi.org/10.1172/JCI106924

Article  CAS  PubMed  PubMed Central  Google Scholar 

Das A, Brown MS, Anderson DD, Goldstein JL, Radhakrishnan A (2014) Three pools of plasma membrane cholesterol and their relation to cholesterol homeostasis. Elife 3. https://doi.org/10.7554/eLife.02882

Dason JS, Smith AJ, Marin L, Charlton MP (2010) Vesicular sterols are essential for synaptic vesicle cycling. J Neurosci 30(47):15856–15865. https://doi.org/10.1523/JNEUROSCI.4132-10.2010

Article  CAS  PubMed  PubMed Central  Google Scholar 

Endapally S, Frias D, Grzemska M, Gay A, Tomchick DR, Radhakrishnan A (2019) Molecular discrimination between two conformations of Sphingomyelin in plasma membranes. Cell 176(5):1040–1053e1017. https://doi.org/10.1016/j.cell.2018.12.042

Article  CAS  PubMed  PubMed Central  Google Scholar 

Giocondi MC, Milhiet PE, Dosset P, Le Grimellec C (2004) Use of cyclodextrin for AFM monitoring of model raft formation. Biophys J 86(2):861–869. https://doi.org/10.1016/s0006-3495(04)74161-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Goossens C, Weckx R, Derde S, Vander Perre S, Derese I, Van Veldhoven PP, Ghesquiere B, Van den Berghe G, Langouche L (2021) Altered cholesterol homeostasis in critical illness-induced muscle weakness: effect of exogenous 3-hydroxybutyrate. Crit Care 25(1):252. https://doi.org/10.1186/s13054-021-03688-1

Article  PubMed  PubMed Central  Google Scholar 

Gordon BR, Parker TS, Levine DM, Saal SD, Wang JC, Sloan BJ, Barie PS, Rubin AL (2001) Relationship of hypolipidemia to cytokine concentrations and outcomes in critically ill surgical patients. Crit Care Med 29(8):1563–1568. https://doi.org/10.1097/00003246-200108000-00011

Article  CAS  PubMed  Google Scholar 

Haque MZ, McIntosh VJ, Abou Samra AB, Mohammad RM, Lasley RD (2016) Cholesterol depletion alters cardiomyocyte subcellular signaling and increases Contractility. PLoS ONE 11(7):e0154151. https://doi.org/10.1371/journal.pone.0154151

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ikonen E, Zhou X (2021) Cholesterol transport between cellular membranes: a balancing act between interconnected lipid fluxes. Dev Cell 56(10):1430–1436. https://doi.org/10.1016/j.devcel.2021.04.025

Article  CAS  PubMed  Google Scholar 

Ingre C, Chen L, Zhan Y, Termorshuizen J, Yin L, Fang F (2020) Lipids, apolipoproteins, and prognosis of amyotrophic lateral sclerosis. Neurology 94(17):e1835–e1844. https://doi.org/10.1212/WNL.0000000000009322

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kasimov MR, Giniatullin AR, Zefirov AL, Petrov AM (2015) Effects of 5alpha-cholestan-3-one on the synaptic vesicle cycle at the mouse neuromuscular junction. Biochim Biophys Acta 1851(5):674–685. https://doi.org/10.1016/j.bbalip.2015.02.012

Article  CAS  PubMed  Google Scholar 

Krivoi II, Petrov AM (2019) Cholesterol and the Safety factor for neuromuscular transmission. Int J Mol Sci 20(5). https://doi.org/10.3390/ijms20051046

Launikonis BS, Stephenson DG (2001) Effects of membrane cholesterol manipulation on excitation-contraction coupling in skeletal muscle of the toad. J Physiol 534(Pt 1):71–85. https://doi.org/10.1111/j.1469-7793.2001.00071.x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lenina O, Petrov K, Kovyazina I, Malomouzh A (2019) Enhancement of mouse diaphragm contractility in the presence of antagonists of GABAA and GABAB receptors. Exp Physiol 104(7):1004–1010. https://doi.org/10.1113/EP087611

Article  CAS  PubMed  Google Scholar 

Mesotten D, Swinnen JV, Vanderhoydonc F, Wouters PJ, Van den Berghe G (2004) Contribution of circulating lipids to the improved outcome of critical illness by glycemic control with intensive insulin therapy. J Clin Endocrinol Metab 89(1):219–226. https://doi.org/10.1210/jc.2003-030760

Article  CAS  PubMed  Google Scholar 

Mukhamedyarov MA, Khabibrakhmanov AN, Khuzakhmetova VF, Giniatullin AR, Zakirjanova GF, Zhilyakov NV, Mukhutdinova KA, Samigullin DV, Grigoryev PN, Zakharov AV, Zefirov AL, Petrov AM (2023) Early alterations in Structural and Functional properties in the neuromuscular junctions of Mutant FUS mice. Int J Mol Sci 24(10). https://doi.org/10.3390/ijms24109022

Mukhutdinova KA, Kasimov MR, Giniatullin AR, Zakyrjanova GF, Petrov AM (2018) 24S-hydroxycholesterol suppresses neuromuscular transmission in SOD1(G93A) mice: a possible role of NO and lipid rafts. Mol Cell Neurosci 88:308–318. https://doi.org/10.1016/j.mcn.2018.03.006

Article  CAS  PubMed  Google Scholar 

Odnoshivkina YG, Sytchev VI, Petrov AM (2017) Cholesterol regulates contractility and inotropic response to beta2-adrenoceptor agonist in the mouse atria: involvement of Gi-protein-Akt-NO-pathway. J Mol Cell Cardiol 107:27–40. https://doi.org/10.1016/j.yjmcc.2016.05.001

Article  CAS  PubMed  Google Scholar 

Odnoshivkina JG, Sibgatullina GV, Petrov AM (2023) Lipid-dependent regulation of neurotransmitter release from sympathetic nerve endings in mice atria. Biochim Biophys Acta Biomembr 1865(7):184197. https://doi.org/10.1016/j.bbamem.2023.184197

Article  CAS  PubMed  Google Scholar 

Ormerod KG, Rogasevskaia TP, Coorssen JR, Mercier AJ (2012) Cholesterol-independent effects of methyl-beta-cyclodextrin on chemical synapses. PLoS ONE 7(5):e36395. https://doi.org/10.1371/journal.pone.0036395

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ostrom RS, Bundey RA, Insel PA (2004) Nitric oxide inhibition of adenylyl cyclase type 6 activity is dependent upon lipid rafts and caveolin signaling complexes. J Biol Chem 279(19):19846–19853. https://doi.org/10.1074/jbc.M313440200

Article  CAS  PubMed  Google Scholar 

Petrov AM, Zefirov AL (2013) [Cholesterol and lipid rafts in the biological membranes. Role in the release, reception and ion channel functions]. Usp Fiziol Nauk 44(1):17–38

CAS  PubMed  Google Scholar 

Petrov AM, Kasimov MR, Giniatullin AR, Tarakanova OI, Zefirov AL (2010) The role of cholesterol in the exo- and endocytosis of synaptic vesicles in frog motor nerve endings. Neurosci Behav Physiol 40(8):894–901. https://doi.org/10.1007/s11055-010-9338-9

Article  CAS  PubMed  Google Scholar 

Petrov AM, Naumenko NV, Uzinskaya KV, Giniatullin AR, Urazaev AK, Zefirov AL (2011) Increased non-quantal release of acetylcholine after inhibition of endocytosis by methyl-beta-cyclodextrin: the role of vesicular acetylcholine transporter. Neuroscience 186:1–12.

留言 (0)

沒有登入
gif