Barrientos G, Llanos P, Hidalgo J, Bolanos P, Caputo C, Riquelme A, Sanchez G, Quest AF, Hidalgo C (2015) Cholesterol removal from adult skeletal muscle impairs excitation-contraction coupling and aging reduces caveolin-3 and alters the expression of other triadic proteins. Front Physiol 6:105. https://doi.org/10.3389/fphys.2015.00105
Article PubMed PubMed Central Google Scholar
Binotti B, Jahn R, Perez-Lara A (2021) An overview of the synaptic vesicle lipid composition. Arch Biochem Biophys 709:108966. https://doi.org/10.1016/j.abb.2021.108966
Article CAS PubMed Google Scholar
Bouitbir J, Sanvee GM, Panajatovic MV, Singh F, Krahenbuhl S (2020) Mechanisms of statin-associated skeletal muscle-associated symptoms. Pharmacol Res 154:104201. https://doi.org/10.1016/j.phrs.2019.03.010
Article CAS PubMed Google Scholar
Bryndina IG, Shalagina MN, Sekunov AV, Zefirov AL, Petrov AM (2018) Clomipramine counteracts lipid raft disturbance due to short-term muscle disuse. Neurosci Lett 664:1–6. https://doi.org/10.1016/j.neulet.2017.11.009
Article CAS PubMed Google Scholar
Chevessier F, Peter C, Mersdorf U, Girard E, Krejci E, McArdle JJ, Witzemann V (2012) A new mouse model for the slow-channel congenital myasthenic syndrome induced by the AChR epsilonL221F mutation. Neurobiol Dis 45(3):851–861. https://doi.org/10.1016/j.nbd.2011.10.024
Article CAS PubMed Google Scholar
Crouse JR, Grundy SM, Ahrens EH Jr. (1972) Cholesterol distribution in the bulk tissues of man: variation with age. J Clin Invest 51(5):1292–1296. https://doi.org/10.1172/JCI106924
Article CAS PubMed PubMed Central Google Scholar
Das A, Brown MS, Anderson DD, Goldstein JL, Radhakrishnan A (2014) Three pools of plasma membrane cholesterol and their relation to cholesterol homeostasis. Elife 3. https://doi.org/10.7554/eLife.02882
Dason JS, Smith AJ, Marin L, Charlton MP (2010) Vesicular sterols are essential for synaptic vesicle cycling. J Neurosci 30(47):15856–15865. https://doi.org/10.1523/JNEUROSCI.4132-10.2010
Article CAS PubMed PubMed Central Google Scholar
Endapally S, Frias D, Grzemska M, Gay A, Tomchick DR, Radhakrishnan A (2019) Molecular discrimination between two conformations of Sphingomyelin in plasma membranes. Cell 176(5):1040–1053e1017. https://doi.org/10.1016/j.cell.2018.12.042
Article CAS PubMed PubMed Central Google Scholar
Giocondi MC, Milhiet PE, Dosset P, Le Grimellec C (2004) Use of cyclodextrin for AFM monitoring of model raft formation. Biophys J 86(2):861–869. https://doi.org/10.1016/s0006-3495(04)74161-2
Article CAS PubMed PubMed Central Google Scholar
Goossens C, Weckx R, Derde S, Vander Perre S, Derese I, Van Veldhoven PP, Ghesquiere B, Van den Berghe G, Langouche L (2021) Altered cholesterol homeostasis in critical illness-induced muscle weakness: effect of exogenous 3-hydroxybutyrate. Crit Care 25(1):252. https://doi.org/10.1186/s13054-021-03688-1
Article PubMed PubMed Central Google Scholar
Gordon BR, Parker TS, Levine DM, Saal SD, Wang JC, Sloan BJ, Barie PS, Rubin AL (2001) Relationship of hypolipidemia to cytokine concentrations and outcomes in critically ill surgical patients. Crit Care Med 29(8):1563–1568. https://doi.org/10.1097/00003246-200108000-00011
Article CAS PubMed Google Scholar
Haque MZ, McIntosh VJ, Abou Samra AB, Mohammad RM, Lasley RD (2016) Cholesterol depletion alters cardiomyocyte subcellular signaling and increases Contractility. PLoS ONE 11(7):e0154151. https://doi.org/10.1371/journal.pone.0154151
Article CAS PubMed PubMed Central Google Scholar
Ikonen E, Zhou X (2021) Cholesterol transport between cellular membranes: a balancing act between interconnected lipid fluxes. Dev Cell 56(10):1430–1436. https://doi.org/10.1016/j.devcel.2021.04.025
Article CAS PubMed Google Scholar
Ingre C, Chen L, Zhan Y, Termorshuizen J, Yin L, Fang F (2020) Lipids, apolipoproteins, and prognosis of amyotrophic lateral sclerosis. Neurology 94(17):e1835–e1844. https://doi.org/10.1212/WNL.0000000000009322
Article CAS PubMed PubMed Central Google Scholar
Kasimov MR, Giniatullin AR, Zefirov AL, Petrov AM (2015) Effects of 5alpha-cholestan-3-one on the synaptic vesicle cycle at the mouse neuromuscular junction. Biochim Biophys Acta 1851(5):674–685. https://doi.org/10.1016/j.bbalip.2015.02.012
Article CAS PubMed Google Scholar
Krivoi II, Petrov AM (2019) Cholesterol and the Safety factor for neuromuscular transmission. Int J Mol Sci 20(5). https://doi.org/10.3390/ijms20051046
Launikonis BS, Stephenson DG (2001) Effects of membrane cholesterol manipulation on excitation-contraction coupling in skeletal muscle of the toad. J Physiol 534(Pt 1):71–85. https://doi.org/10.1111/j.1469-7793.2001.00071.x
Article CAS PubMed PubMed Central Google Scholar
Lenina O, Petrov K, Kovyazina I, Malomouzh A (2019) Enhancement of mouse diaphragm contractility in the presence of antagonists of GABAA and GABAB receptors. Exp Physiol 104(7):1004–1010. https://doi.org/10.1113/EP087611
Article CAS PubMed Google Scholar
Mesotten D, Swinnen JV, Vanderhoydonc F, Wouters PJ, Van den Berghe G (2004) Contribution of circulating lipids to the improved outcome of critical illness by glycemic control with intensive insulin therapy. J Clin Endocrinol Metab 89(1):219–226. https://doi.org/10.1210/jc.2003-030760
Article CAS PubMed Google Scholar
Mukhamedyarov MA, Khabibrakhmanov AN, Khuzakhmetova VF, Giniatullin AR, Zakirjanova GF, Zhilyakov NV, Mukhutdinova KA, Samigullin DV, Grigoryev PN, Zakharov AV, Zefirov AL, Petrov AM (2023) Early alterations in Structural and Functional properties in the neuromuscular junctions of Mutant FUS mice. Int J Mol Sci 24(10). https://doi.org/10.3390/ijms24109022
Mukhutdinova KA, Kasimov MR, Giniatullin AR, Zakyrjanova GF, Petrov AM (2018) 24S-hydroxycholesterol suppresses neuromuscular transmission in SOD1(G93A) mice: a possible role of NO and lipid rafts. Mol Cell Neurosci 88:308–318. https://doi.org/10.1016/j.mcn.2018.03.006
Article CAS PubMed Google Scholar
Odnoshivkina YG, Sytchev VI, Petrov AM (2017) Cholesterol regulates contractility and inotropic response to beta2-adrenoceptor agonist in the mouse atria: involvement of Gi-protein-Akt-NO-pathway. J Mol Cell Cardiol 107:27–40. https://doi.org/10.1016/j.yjmcc.2016.05.001
Article CAS PubMed Google Scholar
Odnoshivkina JG, Sibgatullina GV, Petrov AM (2023) Lipid-dependent regulation of neurotransmitter release from sympathetic nerve endings in mice atria. Biochim Biophys Acta Biomembr 1865(7):184197. https://doi.org/10.1016/j.bbamem.2023.184197
Article CAS PubMed Google Scholar
Ormerod KG, Rogasevskaia TP, Coorssen JR, Mercier AJ (2012) Cholesterol-independent effects of methyl-beta-cyclodextrin on chemical synapses. PLoS ONE 7(5):e36395. https://doi.org/10.1371/journal.pone.0036395
Article CAS PubMed PubMed Central Google Scholar
Ostrom RS, Bundey RA, Insel PA (2004) Nitric oxide inhibition of adenylyl cyclase type 6 activity is dependent upon lipid rafts and caveolin signaling complexes. J Biol Chem 279(19):19846–19853. https://doi.org/10.1074/jbc.M313440200
Article CAS PubMed Google Scholar
Petrov AM, Zefirov AL (2013) [Cholesterol and lipid rafts in the biological membranes. Role in the release, reception and ion channel functions]. Usp Fiziol Nauk 44(1):17–38
Petrov AM, Kasimov MR, Giniatullin AR, Tarakanova OI, Zefirov AL (2010) The role of cholesterol in the exo- and endocytosis of synaptic vesicles in frog motor nerve endings. Neurosci Behav Physiol 40(8):894–901. https://doi.org/10.1007/s11055-010-9338-9
Article CAS PubMed Google Scholar
Petrov AM, Naumenko NV, Uzinskaya KV, Giniatullin AR, Urazaev AK, Zefirov AL (2011) Increased non-quantal release of acetylcholine after inhibition of endocytosis by methyl-beta-cyclodextrin: the role of vesicular acetylcholine transporter. Neuroscience 186:1–12.
留言 (0)