Beebe SE, Rao IM, Blair MW, Acosta-Gallegos JA. Phenotyping common beans for adaptation to drought. Front Physiol. 2013;4:35.
Article CAS PubMed PubMed Central Google Scholar
Scully B, Waines JG. Ontogeny and yield response of common and tepary beans to temperature. Agron J. 1988;80:921–5.
Balasubramanian P, Vandenberg A, Hucl P, Gusta L. Resistance of Phaseolus species to ice crystallization at subzero temperature. Physiol Plant. 2004;120(3):451–7.
Article CAS PubMed Google Scholar
Sternberg PD, Ulery AL, Villa CM. Salinity and boron effects on growth and yield of Tepary and kidney beans. HortScience. 2001;36(7):1269–72.
Parsons LR, Howe TK. Effects of water stress on the water relations of Phaseolus vulgaris and the drought resistant Phaseolus acutifolius. Physiol Plant. 1984;60:197–202.
González de Mejía E, Martínez-Resendiz V, Castaño-Tostado E, Loarca-Piña G. Effect of drought on polyamine metabolism, yield, protein content and in vitro protein digestibility in Tepary (Phaseolus acutifolius) and common (Phaseolus vulgaris) bean seeds. J Sci Food Agric. 2003;83:1022–30.
Türkan İ, Bor M, Özdemir F, Koca H. Differential responses of lipid peroxidation and antioxidants in the leaves of drought-tolerant P. Acutifolius Gray and drought-sensitive P. Vulgaris L. subjected to polyethylene glycol mediated water stress. Plant Sci. 2005;168(1):223–31.
Castonguay Y, Markhart AH. Leaf gas exchange in water-stressed common bean and tepary bean. Crop Sci. 1992;32:980–6.
Medina V, Teran, Berny-Mier y Teran JC, Gepts P, Gilbert ME. Low stomatal sensitivity to vapor pressure deficit in irrigated common, lima and tepary beans. Field Crops Res. 2017;206:128–37.
Leal-Delgado R, Peña-Valdivia CB, García-Nava R, García-Esteva A, Martínez-Barajas E, Padilla-Chacón D. Phenotypical, physiological and biochemical traits of the vegetative growth of wild Tepary bean (Phaseolus acutifolius) under restricted water conditions. South Afr J Plant Soil. 2019;36:261–70.
Idouraine A, Yensen SB, Weber CW. Fractionation and partial characterization of Tepary bean (Phaseolus acutifolius) proteins. Food Chem. 1994;50(1):13–8.
Schinkel C, Gepts P. Phaseolin Diversity in the Tepary Bean, Phaseolus acutifolius A. Gray. Plant Breeding. 1988;101:292–301.
Bhardwaj HL, Hamama AA. Protein and Mineral composition of Tepary Bean seed. HortScience HortSci. 2004;39(6):1363–5.
Mouzo D, Bernal J, López-Pedrouso M, Franco D, Zapata C. Advances in the Biology of Seed and Vegetative Storage Proteins Based on Two-Dimensional Electrophoresis Coupled to Mass Spectrometry. Molecules. 2018;23(10): 2462.
Article PubMed PubMed Central Google Scholar
Robison FM, Heuberger AD, Brick MA, Prenni JE. Proteome Characterization of Leaves in Common Bean. Proteomes. 2015;3(3):236–48.
Article CAS PubMed PubMed Central Google Scholar
Mahalingam R. Temporal analyses of barley malting stages using shot-gun proteomics. Proteomics. 2018;18:1800025.
Brosowska-Arendt W, Gallardo K, Sommerer N, Weidner S. Changes in the proteome of pea (Pisum sativum L.) seeds germinating under optimal and osmotic stress conditions and subjected to poststress recovery. Acta Physiol Plant. 2014;36:795–807.
Rahman M, Guo Q, Baten A, Mauleon R, Khatun A, Liu L, Barkla BJ. Shotgun proteomics of Brassica rapa seed proteins identifies vicilin as a major seed storage protein in the mature seed. PLoS One. 2021;9(7):e0253384.
Poza-Viejo L, Redondo-Nieto M, Matías J, Granado-Rodríguez S, Maestro-Gaitán I, Cruz V, Olmos E, Bolaños L, Reguera M. Shotgun proteomics of quinoa seeds reveals chitinases enrichment under rainfed conditions. Sci Rep. 2023;13:4951.
Article CAS PubMed PubMed Central Google Scholar
Celmeli T, Sari H, Canci H, Sari D, Adak A, Eker T, Toker C. The nutritional content of common bean (Phaseolus vulgaris L.) landraces in comparison to modern varieties. Agronomy. 2018;8(9):166.
López-Ibarra C, Ruiz-López FJ, Bautista-Villarreal M, Báez-González JG, Rodríguez Romero BA, González-Martínez BE, López-Cabanillas Lomelí M, Vázquez-Rodríguez JA. Protein concentrates on Tepary Bean (Phaseolus acutifolius A.Gray) as a functional ingredient: in silico docking of Tepary Bean lectin to peroxisome proliferator-activated receptor Gamma. Front Nutr. 2021;8:661463.
Article PubMed PubMed Central Google Scholar
Mahpara S, Zainab A, Ullah R, Kausar S, Bilal M, Latif MI, Arif M, Akhtar I, Al-Hashimi A, Elshikh MS, Zivcak M, Zuan ATK. The impact of PEG-induced drought stress on seed germination and seedling growth of different bread wheat (Triticum aestivum L.) genotypes. PLoS ONE. 2022;17(2): e0262937.
Article CAS PubMed PubMed Central Google Scholar
Jimenez-Galindo JC, Lorena Alvarez-Iglesias L, Revilla-Temino P, Jacinto-Soto R, Garcia-Dominguez LE, de La Fuente-Martinez M, Malvar-Pintos RA, Ordas-Lopez B, Vander Wal AJ, Osorno JM. Screening for Drought Tolerance in Tepary and Common Bean based on osmotic potential assays. Plant. 2018;6(2):24–32.
Allen E, Alvarez. S. International rules for seed testing 2020. Bassersdorf, Switzerland: The International Seed Testing Association.
Herrera-Diaz J, Jelezova MK, Cruz-Garcia F, Dinkova TD. Protein disulfide isomerase (PDI1-1) differential expression and modification in Mexican malting barley cultivars. PLoS One. 2022;13(11):e0206470.
Duarte Escalante E, Frías DeLeón MG, Martínez García LG, Herrera J, Acosta Altamirano G, Cabello C, Palma G, Reyes Montes MdR. Selection of Specific Peptides for Coccidioides spp. Obtained from Antigenic Fractions through SDS–PAGE and Western Blot Methods by the Recognition of Sera from Patients with Coccidioidomycosis. Molecules. 2018;23(12):3145.
Article PubMed PubMed Central Google Scholar
Finch-Savage WE, Bassel GW. Seed vigor and crop establishment: extending performance beyond adaptation. J Exp Bot. 2016;67(3):567–91.
Article CAS PubMed Google Scholar
Vidak M, Lazarević B, Javornik T, Šatović Z, Carović-Stanko K. Seed water absorption, germination, emergence and seedling phenotypic characterization of the common bean landraces differing in seed size and color. Seeds. 2022;1(4):324–39.
Blessing CH, Mariette A, Kaloki P, Bramley H. Profligate and Conservative: water use strategies in grain legumes. J Exp Bot. 2018;69(3):349–69.
Article CAS PubMed Google Scholar
Jiménez Galindo JC, Acosta Gallegos JA. Characterization of creole genotypes of tepary bean (Phaseolus acutifolius A. Gray) and common (Phaseolus vulgaris L.) under rainfed. Revista Mexicana de Ciencias Agrícolas. 2012;3(1):1565–77.
Jiménez Galindo JC, Acosta Gallegos JA. Evaluation of the yield of common (Phaseolus vulgaris L.) and Tepary (Phaseolus acutifolius A. Gray) beans with the irrigation-drought method in Chihuahua. Revista Mexicana de Ciencias Agrícolas. 2013;4(4):557–67.
Savelkoul FHMG, Tamminga S, Leenaars PPAM, schering J. Ter Maat DW. The degradation of lectins, phaseolin and trypsin inhibitors during germination of white kidney beans, Phaseolus vulgaris L. Plant Foods Hum Nutr. 1994;45:213–22.
López-Pedrouso M, Alonso J, Zapata C. Evidence for phosphorylation of the major seed storage protein of the common bean and its phosphorylation-dependent degradation during germination. Plant Mol Biol. 2014;84(4–5):415–28.
Marsolais F, Pajak A, Yin F, Taylor M, Gabriel M, Merino DM, et al. Proteomic analysis of common bean seed with storage protein deficiency reveals upregulation of sulfur-rich proteins and starch and raffinose metabolic enzymes, and downregulation of the secretory pathway. J Proteomics. 2010;73(8):1587–600.
Article CAS PubMed Google Scholar
López-Ibarra C, Ruiz-López FJ, Bautista-Villarreal M, Báez-González JG, Rodríguez Romero BA, González-Martínez BE, et al. Protein concentrates on Tepary Bean (Phaseolus acutifolius A. Gray) as a functional ingredient: in silico docking of tepary bean lectin to peroxisome proliferator-activated receptor gamma. Front Nutr. 2021;8:661463.
Wang P, Leng X, Duan J, Zhu Y, Wang J, Yan Z, et al. Functional component isolated from Phaseolus vulgaris lectin exerts in vitro and in vivo anti-tumor activity through potentiation of apoptosis and immunomodulation. Molecules. 2021;26(2):498.
Article CAS PubMed PubMed Central Google Scholar
Jiang SY, Ma Z, Ramachandran S. Evolutionary history and stress regulation of the lectin superfamily in higher plants. BMC Evol Biol. 2010;10:79.
Article PubMed PubMed Central Google Scholar
Riggs CD, Chrispeels MJ. The expression of phytohemagglutinin genes in Phaseolus vulgaris is associated with organ-specific DNA methylation patterns. Plant Mol Biol. 1990;14(4):629–32.
Article CAS PubMed Google Scholar
Sahid S, Roy C, Paul S, Datta R. Rice lectin protein r40c1 imparts drought tolerance by modulating S-adenosylmethionine synthase 2, stress-associated protein 8 and chromatin-associated proteins. J Exp Bot. 2020;71(22):7331–46.
Article CAS PubMed Google Scholar
Waters ER, Vierling E. Plant small heat shock proteins - evolutionary and functional diversity. New Phytol. 2020;227(1):24–37.
Article CAS PubMed Google Scholar
Hourton-Cabassa C, Ambard-Bretteville F, Moreau F, Davy de Virville J, Rémy R, Francs-Small CC. tress induction of mitochondrial formate dehydrogenase in potato leaves. Plant Physiol. 1998;116(2):627–35.
Article CAS PubMed PubMed Central Google Scholar
Prall W, Sharma B, Gregory BD. Transcription is just the beginning of gene expression regulation: the functional significance of RNA-binding proteins to post-transcriptional processes in plants. Plant Cell Physiol. 2019;60(9):1939–52.
Article CAS PubMed Google Scholar
Naithani S, Komath SS, Nonomura A, Govindjee G. Plant lectins and their many roles: carbohydrate-binding and beyond. J Plant Physiol. 2021;266:153531.
Tanaka T, Minamikawa T, Yamauchi D, Ogushi Y. Expression of an Endopeptidase (EP-C1) in Phaseolus vulgaris plants. Plant Physiol. 1993;101(2):421–8.
留言 (0)