AAV2 vector optimization for retinal ganglion cell-targeted delivery of therapeutic genes

Wong KA, Benowitz LI. Retinal ganglion cell survival and axon regeneration after optic nerve injury: role of inflammation and other factors. Int J Mol Sci. 2022;23:10179.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sanz-Morello B, Ahmadi H, Vohra R, Saruhanian S, Freude KK, Hamann S, et al. Oxidative stress in optic neuropathies. Antioxidants. 2021;10:1538.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Newman NJ, Yu-Wai-Man P, Biousse V, Carelli V. Understanding the molecular basis and pathogenesis of hereditary optic neuropathies: towards improved diagnosis and management. Lancet Neurol. 2023;22:172–88.

Article  CAS  PubMed  Google Scholar 

Quigley HA. Glaucoma. Lancet. 2011;377:1367–77.

Article  PubMed  Google Scholar 

Shu DY, Chaudhary S, Cho KS, Lennikov A, Miller WP, Thorn DC, et al. Role of oxidative stress in ocular diseases: a balancing act. Metabolites. 2023;13:187.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fague L, Liu YA, Marsh-Armstrong N. The basic science of optic nerve regeneration. Ann Transl Med. 2021;9:1276.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Levin LA, Patrick C, Choudry NB, Sharif NA, Goldberg JL. Neuroprotection in neurodegenerations of the brain and eye: lessons from the past and directions for the future. Front Neurol. 2022;13:964197.

Article  PubMed  PubMed Central  Google Scholar 

Wang D, Tai PWL, Gao G. Adeno-associated virus vector as a platform for gene therapy delivery. Nat Rev Drug Discov. 2019;18:358–78.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zinn E, Vandenberghe LH. Adeno-associated virus: fit to serve. Curr Opin Virol. 2014;8:90–7.

Article  PubMed  Google Scholar 

Cwerman-Thibault H, Augustin S, Ellouze S, Sahel JA, Corral-Debrinski M. Gene therapy for mitochondrial diseases: leber hereditary optic neuropathy as the first candidate for a clinical trial. C R Biol. 2014;337:193–206.

Article  PubMed  Google Scholar 

Martin KR, Quigley HA. Gene therapy for optic nerve disease. Eye. 2004;18:1049–55.

Article  CAS  PubMed  Google Scholar 

Mak KY, Rajapaksha IG, Angus PW, Herath CB. The adeno-associated virus - a safe and promising vehicle for liverspecific gene therapy of inherited and non-inherited disorders. Curr Gene Ther. 2017;17:4–16.

Article  CAS  PubMed  Google Scholar 

Bennett J. Taking stock of retinal gene therapy: looking back and moving forward. Mol Ther. 2017;25:1076–94.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gao J, Hussain RM, Weng CY. Voretigene neparvovec in retinal diseases: a review of the current clinical evidence. Clin Ophthalmol. 2020;14:3855–69.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Russell S, Bennett J, Wellman JA, Chung DC, Yu ZF, Tillman A, et al. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial. Lancet. 2017;390:849–60.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Buning H, Perabo L, Coutelle O, Quadt-Humme S, Hallek M. Recent developments in adeno-associated virus vector technology. J Gene Med. 2008;10:717–33.

Article  PubMed  Google Scholar 

Srivastava A. In vivo tissue-tropism of adeno-associated viral vectors. Curr Opin Virol. 2016;21:75–80.

Article  CAS  PubMed  PubMed Central  Google Scholar 

O’Donnell J, Taylor KA, Chapman MS. Adeno-associated virus-2 and its primary cellular receptor–Cryo-EM structure of a heparin complex. Virology. 2009;385:434–43.

Article  PubMed  Google Scholar 

Hadaczek P, Mirek H, Bringas J, Cunningham J, Bankiewicz K. Basic fibroblast growth factor enhances transduction, distribution, and axonal transport of adeno-associated virus type 2 vector in rat brain. Hum Gene Ther. 2004;15:469–79.

Article  CAS  PubMed  Google Scholar 

Kashiwakura Y, Tamayose K, Iwabuchi K, Hirai Y, Shimada T, Matsumoto K, et al. Hepatocyte growth factor receptor is a coreceptor for adeno-associated virus type 2 infection. J Virol. 2005;79:609–14.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Asokan A, Hamra JB, Govindasamy L, Agbandje-McKenna M, Samulski RJ. Adeno-associated virus type 2 contains an integrin alpha5beta1 binding domain essential for viral cell entry. J Virol. 2006;80:8961–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kurzeder C, Koppold B, Sauer G, Pabst S, Kreienberg R, Deissler H. CD9 promotes adeno-associated virus type 2 infection of mammary carcinoma cells with low cell surface expression of heparan sulphate proteoglycans. Int J Mol Med. 2007;19:325–33.

CAS  PubMed  Google Scholar 

Van Vliet KM, Blouin V, Brument N, Agbandje-McKenna M, Snyder RO. The role of the adeno-associated virus capsid in gene transfer. Methods Mol Biol. 2008;437:51–91.

Article  PubMed  PubMed Central  Google Scholar 

Rabinowitz JE, Rolling F, Li C, Conrath H, Xiao W, Xiao X, et al. Cross-packaging of a single adeno-associated virus (AAV) type 2 vector genome into multiple AAV serotypes enables transduction with broad specificity. J Virol. 2002;76:791–801.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ramachandran PS, Lee V, Wei Z, Song JY, Casal G, Cronin T, et al. Evaluation of dose and safety of AAV7m8 and AAV8BP2 in the non-human primate retina. Hum Gene Ther. 2017;28:154–67.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ross AG, Chaqour B, McDougald DS, Dine KE, Duong TT, Shindler RE, et al. Selective upregulation of sirt1 expression in retinal ganglion cells by AAV-mediated gene delivery increases neuronal cell survival and alleviates axon demyelination associated with optic neuritis. Biomolecules. 2022;12:830.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yue J, Khan RS, Duong TT, Dine KE, Cui QN, O’Neill N, et al. Cell-specific expression of human sirt1 by gene therapy reduces retinal ganglion cell loss induced by elevated intraocular pressure. Neurotherapeutics. 2023;20:896–907.

Article  CAS  PubMed  Google Scholar 

McDougald DS, Dine KE, Zezulin AU, Bennett J, Shindler KS. SIRT1 and NRF2 gene transfer mediate distinct neuroprotective effects upon retinal ganglion cell survival and function in experimental optic neuritis. Invest Ophthalmol Vis Sci. 2018;59:1212–20.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alam F, Syed H, Amjad S, Baig M, Khan TA, Rehman R. Interplay between oxidative stress, SIRT1, reproductive and metabolic functions. Curr Res Physiol. 2021;4:119–24.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Singh V, Ubaid S. Role of silent information regulator 1 (SIRT1) in regulating oxidative stress and inflammation. Inflammation. 2020;43:1589–98.

Article  CAS  PubMed  Google Scholar 

Li L, Zhi D, Cheng R, Li J, Luo C, Li H. The neuroprotective role of SIRT1/PGC-1alpha signaling in limb postconditioning in cerebral ischemia/reperfusion injury. Neurosci Lett. 2021;749:135736.

Article  CAS  PubMed  Google Scholar 

Nita M, Grzybowski A. Interplay between reactive oxygen species and autophagy in the course of age-related macular degeneration. EXCLI J. 2020;19:1353–71.

PubMed  PubMed Central  Google Scholar 

Samarin J, Wessel J, Cicha I, Kroening S, Warnecke C, Goppelt-Struebe M. FoxO proteins mediate hypoxic induction of connective tissue growth factor in endothelial cells. J Biol Chem. 2010;285:4328–36.

Article  CAS  PubMed  Google Scholar 

Chaffiol A, Caplette R, Jaillard C, Brazhnikova E, Desrosiers M, Dubus E, et al. A new promoter allows optogenetic vision restoration with enhanced sensitivity in macaque retina. Mol Ther. 2017;25:2546–60.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bennicelli J, Wright JF, Komaromy A, Jacobs JB, Hauck B, Zelenaia O, et al. Reversal of blindness in animal models of Leber congenital amaurosis using optimized AAV2-mediated gene transfer. Mol Ther. 2008;16:458–65.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif