Design and Production of a Chimeric Enzyme with Efficient Antibacterial Properties on Staphylococcus aureus

Abdelrahman F et al (2021) Phage-encoded endolysins. Antibiotics 10(2):124

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ahmad-Mansour N et al (2021) Staphylococcus aureus toxins: an update on their pathogenic properties and potential treatments. Toxins 13(10):677

Article  CAS  PubMed  PubMed Central  Google Scholar 

Andrews JM (2001) Determination of minimum inhibitory concentrations. J Antimicrob Chemother 48(suppl_1):5–16

Article  CAS  PubMed  Google Scholar 

Asadi M et al (2023) LYZ2-SH3b as a novel and efficient enzybiotic against methicillin-resistant Staphylococcus aureus. BMC Microbiol 23(1):257

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bae JY et al (2019) Efficacy of intranasal administration of the recombinant endolysin SAL200 in a lethal murine Staphylococcus aureus pneumonia model. Antimicrob Agents Chemother 63(4):e02009-e2018

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barnes VL et al (2023) Antimicrobial susceptibility testing to evaluate minimum inhibitory concentration values of clinically relevant antibiotics. STAR Protoc 4(3):102512

Article  Google Scholar 

Becker SC et al (2009) LysK CHAP endopeptidase domain is required for lysis of live staphylococcal cells. FEMS Microbiol Lett 294(1):52–60

Article  CAS  PubMed  Google Scholar 

Bera A et al (2005) Why are pathogenic staphylococci so lysozyme resistant? The peptidoglycan O-acetyltransferase OatA is the major determinant for lysozyme resistance of Staphylococcus aureus. Mol Microbiol 55(3):778–787

Article  CAS  PubMed  Google Scholar 

Bera A et al (2006) The presence of peptidoglycan O-acetyltransferase in various staphylococcal species correlates with lysozyme resistance and pathogenicity. Infect Immun 74(8):4598–4604

Article  CAS  PubMed  PubMed Central  Google Scholar 

Buchan DW et al (2013) Scalable web services for the PSIPRED protein analysis workbench. Nucleic Acids Res 41:W349–W357

Article  PubMed  PubMed Central  Google Scholar 

Chalmers SJ, Wylam ME (2020) Methicillin-resistant Staphylococcus aureus infection and treatment options. Methicillin-resistant Staphylococcus Aureus (MRSA) protocols, pp 229–251

Chen X, Zaro JL, Shen W-C (2013) Fusion protein linkers: property, design and functionality. Adv Drug Deliv Rev 65(10):1357–1369

Article  CAS  PubMed  Google Scholar 

Clinical and Laboratory Standards Institute (CLSI) (2012) Methods for dilution antimicrobial susceptibility tests f or bacteria that grow aerobically; approved standard—Ninth Edition

Dams, D. and Y. Briers, Enzybiotics: Enzyme-based antibacterials as therapeutics. Therapeutic Enzymes: Function and Clinical Implications, 2019: p. 233–253.

Daniel A et al (2010) Synergism between a novel chimeric lysin and oxacillin protects against infection by methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 54(4):1603

Article  CAS  PubMed  PubMed Central  Google Scholar 

Farnoosh G et al (2016) Engineering and introduction of de novo disulphide bridges in organophosphorus hydrolase enzyme for thermostability improvement. J Biosci 41(4):577–588

Article  CAS  PubMed  Google Scholar 

Farnoosh G et al (2020) Catalytic and structural effects of flexible loop deletion in organophosphorus hydrolase enzyme: a thermostability improvement mechanism. J Biosci 45(1):1–10

Article  Google Scholar 

Fenton M et al (2011) Characterization of the staphylococcal bacteriophage lysin CHAP(K). J Appl Microbiol 111(4):1025–1035

Article  CAS  PubMed  Google Scholar 

Fernandes S et al (2012) Novel chimerical endolysins with broad antimicrobial activity against methicillin-resistant Staphylococcus aureus. Microb Drug Resist 18(3):333–343

Article  CAS  PubMed  Google Scholar 

Fraunholz M, Sinha B (2012) Intracellular Staphylococcus aureus: live-in and let die. Front Cell Infect Microbiol 2:43

Article  PubMed  PubMed Central  Google Scholar 

Gerstmans H, Criel B, Briers Y (2018) Synthetic biology of modular endolysins. Biotechnol Adv 36(3):624–640

Article  CAS  PubMed  Google Scholar 

Haddad Kashani H et al (2017) A novel chimeric endolysin with antibacterial activity against methicillin-resistant Staphylococcus aureus. Front Cell Infect Microbiol 7:290–290

Article  PubMed  PubMed Central  Google Scholar 

Haddad Kashani H et al (2018) Recombinant endolysins as potential therapeutics against antibiotic-resistant Staphylococcus aureus: current status of research and novel delivery strategies. Clin Microbiol Rev 31(1):e00071-e117

Article  PubMed  Google Scholar 

Heo L, Park H, Seok C (2013) GalaxyRefine: protein structure refinement driven by side-chain repacking. Nucleic Acids Res 41:W384–W438

Article  PubMed  PubMed Central  Google Scholar 

Kusuma CM, Kokai-Kun JF (2005) Comparison of four methods for determining lysostaphin susceptibility of various strains of Staphylococcus aureus. Antimicrob Agents Chemother 49(8):3256–3263

Article  CAS  PubMed  PubMed Central  Google Scholar 

Leimer N et al (2016) Nonstable Staphylococcus aureus small-colony variants are induced by low pH and sensitized to antimicrobial therapy by phagolysosomal alkalinization. J Infect Dis 213(2):305–313

Article  CAS  PubMed  Google Scholar 

Malachowa N, DeLeo FR (2010) Mobile genetic elements of Staphylococcus aureus. Cell Mol Life Sci 67(18):3057–3071

Article  CAS  PubMed  PubMed Central  Google Scholar 

Maleksabet A et al (2021) Specific targeting of recombinant human pancreatic ribonuclease 1 using gonadotropin-releasing hormone targeting peptide toward gonadotropin-releasing hormone receptor-positive cancer cells. Iran J Med Sci 46(4):281–290

PubMed  PubMed Central  Google Scholar 

Manoharadas S, Witte A, Bläsi U (2009a) Antimicrobial activity of a chimeric enzybiotic towards Staphylococcus aureus. J Biotechnol 139(1):118–123

Article  CAS  PubMed  Google Scholar 

O’flaherty S et al (2005) The recombinant phage lysin LysK has a broad spectrum of lytic activity against clinically relevant staphylococci, including methicillin-resistant Staphylococcus aureus. J Bacteriol 187(20):7161–7164

Article  CAS  PubMed  PubMed Central  Google Scholar 

Oliveira D, Borges A, Simões M (2018) Staphylococcus aureus toxins and their molecular activity in infectious diseases. Toxins 10(6):252

Article  PubMed  PubMed Central  Google Scholar 

De Oliveira, D.M.P. and B.M. Forde, Antimicrobial Resistance in ESKAPE Pathogens. 2020. 33(3).

Pettersen EF et al (2004) UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612

Article  CAS  PubMed  Google Scholar 

Rashel M et al (2008) Tail-associated structural protein gp61 of Staphylococcus aureus phage phi MR11 has bifunctional lytic activity. FEMS Microbiol Lett 284(1):9–16

Article  CAS  PubMed  Google Scholar 

Roach DR, Donovan DM (2015) Antimicrobial bacteriophage-derived proteins and therapeutic applications. Bacteriophage 5(3):e1062590

Article  CAS  PubMed  PubMed Central  Google Scholar 

Röhrig C et al (2020) Targeting hidden pathogens: cell-penetrating enzybiotics eradicate intracellular drug-resistant Staphylococcus aureus. Mbio 11(2):e00209-e220

Article  PubMed  PubMed Central  Google Scholar 

Schmelcher M, Tchang VS, Loessner MJ (2011) Domain shuffling and module engineering of Listeria phage endolysins for enhanced lytic activity and binding affinity. Microb Biotechnol 4(5):651–662

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sim P, Strudwick XL (2022) Influence of acidic pH on wound healing in vivo: a novel perspective for wound treatment 23(21)

Taheri-Anganeh M et al (2021) In silico design and evaluation of PRAME+FliCΔD2D3 as a new breast cancer vaccine candidate. Iran J Med Sci 46(1):52–60

PubMed  Google Scholar 

Vacek L et al (2020) Enzybiotics LYSSTAPH-S and LYSDERM-S as potential therapeutic agents for chronic MRSA wound infections. Antibiotics 9(8):519

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vakili O et al (2021) Finding appropriate signal peptides for secretory production of recombinant glucarpidase: an in silico method. Recent Pat Biotechnol 15(4):302–315

Article  CAS  PubMed  Google Scholar 

Veisi Malekshahi Z et al (2019) CEA plasmid as therapeutic DNA vaccination against colorectal cancer. Iran J Immunol 16(3):235–245

PubMed 

留言 (0)

沒有登入
gif