Evaluation of the Antimicrobial Efficacy of Epidermal Mucus Extract from Air-Breathing Fish (Channa punctatus) and Identification of the Peptides Serving as Immune Components

Abdel-Shafi S, Osman A, Al-Mohammadi AR, Enan G, Kamal N, Sitohy M (2019) Biochemical, biological characteristics and antibacterial activity of glycoprotein extracted from the epidermal mucus of African catfish (Clarias gariepinus). Int J Biol Macromol 138:773–780

Article  PubMed  CAS  Google Scholar 

Aneesh Kumar A, Ajith Kumar GS, Satheesh G, Surendran A, Chandran M, Kartha CC, Jaleel A (2021) Proteomics analysis reveals diverse molecular characteristics between endocardial and aortic-valvular endothelium. Genes 12(7):1005

Article  PubMed  PubMed Central  CAS  Google Scholar 

Aranishi F (1999) Lysis of pathogenic bacteria by epidermal cathepsins L and B in the Japanese eel. Fish Physiol Biochem 20:37–41

Article  CAS  Google Scholar 

Austin B, McIntosh D (1988) Natural antibacterial compounds on the surface of rainbow trout. Salmo Gairdneri Richardson J Fish Dis 11:275–277

Article  Google Scholar 

Batdorj B, Dalgalarrondo M, Choiset Y, Pedroche J, Métro F, Prévost H, Chobert JM, Haertlé T (2006) Purification and characterization of two bacteriocins produced by lactic acid bacteria isolated from Mongolian airag. J Appl Microbiol 101:837–848

Article  PubMed  CAS  Google Scholar 

Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

Article  PubMed  CAS  Google Scholar 

Chung CR, Kuo TR, Wu LC, Lee TY, Horng JT (2020) Characterization and identification of antimicrobial peptides with different functional activities. Briefig Bioinf 21:1098–1114

Article  CAS  Google Scholar 

Cupp-Enyard C (2008) Sigma’s non-specific protease activity assay-casein as a substrate. JoVE (J of Visualized Experiments) 19:e899

Google Scholar 

Dash S, Samal J, Thatoi H (2014) A comparative study on innate immunity parameters in the epidermal mucus of Indian major carps. Aquac Int 22:411–421

Article  CAS  Google Scholar 

Ellis AE (1990) Serum antiproteases in fish. In: Stolen JS, Fletcher TC, Anderson DP, Roberson BS, van Muiswinkel WB (eds)  Techniques in fish immunol fair haven. NJ SOS Publications, Ikeja, pp 95–99

Google Scholar 

Fjell CD, Hiss JA, Hancock RE, Schneider G (2012) Designing antimicrobial peptides: form follows function. Nat Rev Drug Discov 11:37–51

Article  CAS  Google Scholar 

Fletcher TC, Grant PT (1969) Immunoglobulins in the serum and mucus of the plaice (Pleuronectes platessa). Biochem J 115:65P

Article  PubMed  PubMed Central  CAS  Google Scholar 

Halwart M (2020) Fish farming high on the global food system agenda in 2020. FAO Aquaculture Newsletter 61:2–3

Google Scholar 

Hanif A, Bakopoulos V, Dimitriadis GJ (2004) Maternal transfer of humoral specific and non-specific immune parameters to sea bream (Sparus aurata) larvae. Fish Shellfish Immunol 17:411–435

Article  PubMed  CAS  Google Scholar 

Hildemann WH (1959) A cichlid fish, Symphysodon discus, with unique nurture habits. Am Nat 93:27–34

Article  Google Scholar 

Hussain A, Sachan SG (2023) Fish epidermal mucus as a source of Diverse Therapeutical compounds. Int J Pep Res Thera 29(3):36

Article  CAS  Google Scholar 

Iger Y, Abraham M (1997) Rodlet cells in the epidermis of fish exposed to stressors. Tissue Cell 29:431–438

Article  PubMed  CAS  Google Scholar 

Jameel F, Agarwal J, Waseem M, Serajuddin M (2019) Antibacterial activity of epidermal mucus extracts of three freshwater air-breathing fish species against human pathogenic bacteria. Ind J Fish 66:119–123

Google Scholar 

Kumari U, Nigam AK, Mittal S, Mittal AK (2011) Antibacterial properties of the skin mucus of the freshwater fishes, and Rita rita Channa punctatus. Eur Rev Med Pharmacol Sci 15(7):781–786

PubMed  CAS  Google Scholar 

Kumari S, Tyor AK, Bhatnagar A (2019) Evaluation of the antibacterial activity of skin mucus of three carp species. Int Aqua Res 11:225–239

Article  Google Scholar 

Kuppulakshmi C, Prakash M, Gunasekaran G, Manimegalai G, Sarojini S (2008) Antibacterial properties of fish mucus from. Eur Rev Med Pharmacol Sci 12:149–153

PubMed  CAS  Google Scholar 

Laemmli UK (1970) SDS-page Laemmli method. Nature 227:680–685

Article  PubMed  CAS  Google Scholar 

Lebedeva N, Vosyliene MZ, Golovkina T (2002) The effect of toxic and heliophysical factors on the biochemical parameters of the external mucus of carp, (Cyprinus carpio L). Fish Aquat Life 10:5–14

Google Scholar 

Li T, Liu Q, Wang D, Li J (2019) Characterization and antimicrobial mechanism of CF-14, a new antimicrobial peptide from the epidermal mucus of catfish. Fish Shellfish Immunol 92:881–888

Article  PubMed  CAS  Google Scholar 

Liu Z, Zhou G, Li S, Wang C, Liu R, Jiang W (2020) Molecular dynamics simulation and experimental characterization of anionic surfactant: influence on wettability of low-rank coal. Fuel 279:118323

Article  CAS  Google Scholar 

Lopes-Ferreira M, Magalhães GS, Fernandez JH, Inácio de Loiola M, Le Ho P, Lima C, Valente RH, Moura-da-Silva AM (2011) Structural and biological characterization of Nattectin, a new C-type lectin from the venomous fish Thalassophryne nattereri. Biochimie 93:971–980

Article  PubMed  CAS  Google Scholar 

Louis KS, Siegel AC (2011) Cell viability analysis using trypan blue: manual and automated methods. Mamm Cell Viability: Methods Protoc. https://doi.org/10.1007/978-1-61779-108-6_2

Article  Google Scholar 

Ming L, Xiaoling P, Yan L, Lili W, Qi W, Xiyong Y, Boyao W, Ning H (2007) Purification of antimicrobial factors from human cervical mucus. Hum Reprod 22:1810–1815

Article  PubMed  Google Scholar 

Najm AAK, Azfaralariff A, Dyari HRE, Othman BA, Shahid M, Khalili N, Law D, Syed Alwi SS, Fazry S (2021) Anti-breast cancer synthetic peptides derived from the Anabas testudineus skin mucus fractions. Sci Rep 11(1):23182

Article  PubMed  PubMed Central  CAS  Google Scholar 

Oren Z, Shai Y (1996) A class of highly potent antibacterial peptides derived from pardaxin, a pore-forming peptide isolated from Moses sole fish Pardachirus marmoratus. Eur J Biochem 237:303–310

Article  PubMed  CAS  Google Scholar 

Parish CA, Jiang H, Tokiwa Y, Berova N, Nakanishi K, McCabe D, Zuckerman W, Xia MM, Gabay JE (2001) Broad-spectrum antimicrobial activity of hemoglobin. Bioorg Med Chem 9:377–382

Article  PubMed  CAS  Google Scholar 

Pirtskhalava M, Amstrong AA, Grigolava M, Chubinidze M, Alimbarashvili E, Vishnepolsky B, Gabrielian A, Rosenthal A, Hurt DE, Tartakovsky M (2021) DBAASP v3: database of antimicrobial/cytotoxic activity and structure of peptides as a resource for development of new therapeutics. Nucleic Acids Res 49:D288–D297

Article  PubMed  CAS  Google Scholar 

Rao V, Marimuthu K, Kupusamy T, Rathinam X, Arasu MV, Al-Dhabi NA, Arockiaraj J (2015) Defense properties in the epidermal mucus of different freshwater fish species. Aquac Aquar Conserv Legis 8:184–194

Google Scholar 

Ross NW, Firth KJ, Wang A, Burka JF, Johnson SC (2000) Changes in hydrolytic enzyme activities of naive Atlantic salmon Salmo salar skin mucus due to Infection with the salmon louse Lepeophtheirus salmonis and cortisol implantation. Dis Aquat Org 41:43–51

Article  CAS  Google Scholar 

Saraiva TC, Grund LZ, Komegae EN, Ramos AD, Conceição K, Orii NM, Lopes-Ferreira M, Lima C (2011) Nattectin a fish C-type lectin drives Th1 responses in vivo: licenses macrophages to differentiate into cells exhibiting typical DC function. Int Immuno Pharmaco 11:1546–1556

Article  CAS  Google Scholar 

Subramanian S, MacKinnon SL, Ross NW (2007) A comparative study on innate immune parameters in the epidermal mucus of various fish species. CBPB 148:256–263

Google Scholar 

Tamhane VA, Sant SS, Jadhav AR, War AR, Sharma HC, Jaleel A, Kashikar AS (2021) Label-free quantitative proteomics of Sorghum bicolor reveals the proteins strengthening plant defense against insect pest Chilo partellus. Proteome Sci 19:1–25

Article  Google Scholar 

Vineetha RC, Hariharan S, Jaleel A, Chandran M, Nair RH (2020) L-ascorbic acid and α-Tocopherol synergistically triggers apoptosis inducing antileukemic effects of arsenic trioxide via oxidative stress in human acute promyelocytic Leukemia cells. Front Oncol 10:65

Article  PubMed  PubMed Central  Google Scholar 

Wang G, Li X, Wang Z (2016) APD3: the antimicrobial peptide database as a tool for res and education. Nucleic Acids Res 44:D1087–D1093

Article  PubMed  CAS  Google Scholar 

Wang H, Tang W, Zhang R, Ding S (2019) Analysis of enzyme activity, antibacterial activity, antiparasitic activity and physico–chemical stability of skin mucus derived from Amphiprion clarkia. Fish Shellfish Immunol 86:653–661

Article  PubMed  CAS  Google Scholar 

Wen LS, Philip K, Ajam N (2016) Purification, characterization and mode of action of plantaricin K25 produced by Lactobacillus plantarum. Food Control 60:430–439

Article  CAS  Google Scholar 

Wiegand I, Hilpert K, Hancock RE (2008) Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc 3:163–175

Article  PubMed  CAS  Google Scholar 

Xu C, Li J, Yang L, Shi F, Yang L, Ye M (2017) Antibacterial activity and a membrane damage mechanism of Lachnum YM30 melanin against Vibrio parahaemolyticus and Staphylococcus aureus. Food

留言 (0)

沒有登入
gif