Inhibition of astroglial hemichannels ameliorates infrasonic noise induced short-term learning and memory impairment

Behler O, Uppenkamp S. Activation in human auditory cortex in relation to the loudness and unpleasantness of low-frequency and infrasound stimuli. PLoS ONE. 2020;15: e0229088.

Article  PubMed  PubMed Central  Google Scholar 

Averbuch G, Assink JD, Evers LG. Long-range atmospheric infrasound propagation from subsurface sources. J Acoust Soc Am. 2020;147:1264.

Article  PubMed  Google Scholar 

Wang X, Lai Y, Zhang X, Zhao J. Effect of low-frequency but high-intensity noise exposure on swine brain blood barrier permeability and its mechanism of injury. Neurosci Lett. 2018;662:122–8.

Article  PubMed  Google Scholar 

Lousinha A, Pereira G, Borrecho G, Brito J, Oliveira de Carvalho A, Freitas D, Oliveira P, Oliveira MJR, Antunes E. Atrial fibrosis and decreased connexin 43 in rat hearts after exposure to high-intensity infrasound. Exp Mol Pathol. 2020;114:104409.

Article  PubMed  Google Scholar 

Enbom H, Enbom IM. Infraljud från vindkraftverk–förbisedd hälsorisk [Infrasound from wind turbines–an overlooked health hazard]. Lakartidningen. 2013;110:1388–9.

PubMed  Google Scholar 

Arabadzhi VI. Infrazvuk i bioritmy mozga cheloveka [Infrasound and biorhythms of the human brain]. Biofizika. 1992;37:150–1.

PubMed  Google Scholar 

Pimenta MG, Martinho Pimenta AJ, Castelo Branco MS, Silva Simôes JM, Castelo Branco NA. ERP P300 and brain magnetic resonance imaging in patients with vibroacoustic disease. Aviat Space Environ Med. 1999;70(3 Pt 2):A107-114.

PubMed  Google Scholar 

Zou LH, Shi YJ, He H, Jiang SM, Huo FF, Wang XM, Wu F, Ma L. Effects of FGF2/FGFR1 pathway on expression of A1 astrocytes after infrasound exposure. Front Neurosci. 2019;13:429.

Article  PubMed  PubMed Central  Google Scholar 

Ascone L, Kling C, Wieczorek J, Koch C, Kühn S. A longitudinal, randomized experimental pilot study to investigate the effects of airborne infrasound on human mental health, cognition, and brain structure. Sci Rep. 2021;11:3190.

Article  PubMed  PubMed Central  Google Scholar 

Yuan H, Long H, Liu J, Qu L, Chen J, Mou X. Effects of infrasound on hippocampus-dependent learning and memory in rats and some underlying mechanisms. Environ Toxicol Pharmacol. 2009;28:243–7.

Article  PubMed  Google Scholar 

Mou X, Yuan H, Jiang S, Qu LL. The effect of infrasound on the expression of IL-6 and astrocyte formation in the hippocampus. Chin J Phys Med Rehabil. 2008;30:452–5.

Google Scholar 

Shi M, Du F, Liu Y, Li L, Cai J, Zhang GF, Xu XF, Lin T, Cheng HR, Liu XD, Xiong LZ, Zhao G. Glial cell-expressed mechanosensitive channel TRPV4 mediates infrasound-induced neuronal impairment. Acta Neuropathol. 2013;126:725–39.

Article  PubMed  Google Scholar 

Shi YJ, Shi M, Xiao LJ, Li L, Zou LH, Li CY, Zhang QJ, Zhou LF, Ji XC, Huang H, Xi Y, Liu L, Zhang HY, Zhao G, Ma L. Inhibitive effects of FGF2/FGFR1 pathway on astrocyte-mediated inflammation in vivo and in vitro after infrasound exposure. Front Neurosci. 2018;12:582.

Article  PubMed  PubMed Central  Google Scholar 

Giaume C, Leybaert L, Naus CC, Sáez JC. Connexin and pannexin hemichannels in brain glial cells: properties, pharmacology, and roles. Front Pharmacol. 2013;4:88.

Article  PubMed  PubMed Central  Google Scholar 

He JT, Li XY, Yang L, Zhao X. Astroglial connexins and cognition: memory formation or deterioration? 2020. Biosci Rep. https://doi.org/10.1042/BSR20193510.

Dermietzel R, Gao Y, Scemes E, Vieira D, Urban M, Kremer M, Bennett MV, Spray DC. Connexin43 null mice reveal that astrocytes express multiple connexins. Brain Res Brain Res Rev. 2000;32:45–56.

Article  PubMed  Google Scholar 

Chávez CE, Oyarzún JE, Avendaño BC, Mellado LA, Inostroza CA, Alvear TF, Orellana JA. The opening of connexin 43 hemichannels alters hippocampal astrocyte function and neuronal survival in prenatally LPS-exposed adult offspring. Front Cell Neurosci. 2019;13:460.

Article  PubMed  PubMed Central  Google Scholar 

Hösli L, Binini N, Ferrari KD, Thieren L, Looser ZJ, Zuend M, Zanker HS, Berry S, Holub M, Möbius W, Ruhwedel T, Nave KA, Giaume C, Weber B, Saab AS. Decoupling astrocytes in adult mice impairs synaptic plasticity and spatial learning. Cell Rep. 2022;38: 110484.

Article  PubMed  Google Scholar 

Díaz EF, Labra VC, Alvear TF, Mellado LA, Inostroza CA, Oyarzún JE, Salgado N, Quintanilla RA, Orellana JA. Connexin 43 hemichannels and pannexin-1 channels contribute to the α-synuclein-induced dysfunction and death of astrocytes. Glia. 2019;67:1598–619.

Article  PubMed  Google Scholar 

Angeli S, Kousiappa I, Stavrou M, Sargiannidou I, Georgiou E, Papacostas SS, Kleopa KA. Altered expression of glial gap junction proteins Cx43, Cx30, and Cx47 in the 5XFAD model of Alzheimer’s disease. Front Neurosci. 2020;14: 582934.

Article  PubMed  PubMed Central  Google Scholar 

Sánchez OF, Rodríguez AV, Velasco-España JM, Murillo LC, Sutachan JJ, Albarracin SL. Role of connexins 30, 36, and 43 in brain tumors, neurodegenerative diseases, and neuroprotection. Cells. 2020;9:846.

Article  PubMed  PubMed Central  Google Scholar 

Madeira D, Dias L, Santos P, Cunha RA, Canas PM, Agostinho P. Association Between Adenosine A2A Receptors and Connexin 43 Regulates Hemichannels Activity and ATP Release in Astrocytes Exposed to Amyloid-β Peptides. Mol Neurobiol. 2021;58:6232–48.

Article  PubMed  Google Scholar 

Montero TD, Orellana JA. Hemichannels: new pathways for gliotransmitter release. Neuroscience. 2015;286:45–59.

Article  PubMed  Google Scholar 

Basu R, Sarma JD. Connexin 43/47 channels are important for astrocyte/ oligodendrocyte cross-talk in myelination and demyelination. J Biosci. 2018;43:1055–68.

Article  PubMed  PubMed Central  Google Scholar 

Jiang S, Wang YQ, Tang YF, Lu X, Guo D. Pre-exposure to environmental enrichment protects against learning and memory deficits caused by infrasound exposure. Oxid Med Cell Longev. 2022;2022:6208872.

Article  PubMed  PubMed Central  Google Scholar 

Jiang S, Wang YQ, Xu CF, Li YN, Guo R, Li L. Involvement of connexin43 in the infrasonic noise-induced glutamate release by cultured astrocytes. Neurochem Res. 2014;39:833–42.

Article  PubMed  Google Scholar 

Yang F, Liu ZR, Chen J, Zhang SJ, Quan QY, Huang YG, Jiang W. Roles of astrocytes and microglia in seizure-induced aberrant neurogenesis in the hippocampus of adult rats. J Neurosci Res. 2010;88:519–29.

Article  PubMed  Google Scholar 

Shibata K, Sugawara T, Fujishita K, Shinozaki Y, Matsukawa T, Suzuki T, Koizumi S. The astrocyte-targeted therapy by Bushi for the neuropathic pain in mice. PLoS ONE. 2011;6: e23510.

Article  PubMed  PubMed Central  Google Scholar 

Badaut J, Ashwal S, Adami A, Tone B, Recker R, Spagnoli D, Ternon B, Obenaus A. Brain water mobility decreases after astrocytic aquaporin-4 inhibition using RNA interference. J Cereb Blood Flow Metab. 2011;31:819–31.

Article  PubMed  Google Scholar 

Wang N, De Vuyst E, Ponsaerts R, Boengler K, Palacios-Prado N, Wauman J, Lai CP, De Bock M, Decrock E, Bol M, Vinken M, Rogiers V, Tavernier J, Evans WH, Naus CC, Bukauskas FF, Sipido KR, Heusch G, Schulz R, Bultynck G, Leybaert L. Selective inhibition of Cx43 hemichannels by Gap19 and its impact on myocardial ischemia/reperfusion injury. Basic Res Cardiol. 2013;108:309.

Article  PubMed  Google Scholar 

Stehberg J, Moraga-Amaro R, Salazar C, Becerra A, Echeverría C, Orellana JA, Bultynck G, Ponsaerts R, Leybaert L, Simon F, Sáez JC, Retamal MA. Release of gliotransmitters through astroglial connexin 43 hemichannels is necessary for fear memory consolidation in the basolateral amygdala. FASEB J. 2012;26:3649–57.

Article  PubMed  Google Scholar 

Morris R. Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods. 1984;11:47–60.

Article  PubMed  Google Scholar 

Hou Y, Zhao W, Yu H, Zhang F, Zhang HT, Zhou Y. Biochanin A alleviates cognitive impairment and hippocampal mitochondrial damage in ovariectomized APP/PS1 mice. Phytomedicine. 2022;100: 154056.

Article  PubMed  Google Scholar 

Jiang S, Yuan H, Duan L, Cao R, Gao B, Xiong YF, Rao ZR. Glutamate release through connexin 43 by cultured astrocytes in a stimulated hypertonicity model. Brain Res. 2011;1392:8–15.

Article  PubMed  Google Scholar 

Dong R, Han Y, Jiang L, Liu S, Zhang F, Peng L, Wang Z, Ma Z, Xia T, Gu X. Connexin 43 gap junction-mediated astrocytic network reconstruction attenuates isoflurane-induced cognitive dysfunction in mice. J Neuroinflammation. 2022;19:64.

Article  PubMed  PubMed Central  Google Scholar 

Lagos-Cabré R, Burgos-Bravo F, Avalos AM, Leyton L. Connexins in astrocyte migration. Front Pharmacol. 2020;10:1546.

Article  PubMed  PubMed Central  Google Scholar 

Orellana JA, Moraga-Amaro R, Díaz-Galarce R, Rojas S, Maturana CJ, Stehberg J, Sáez JC. Restraint stress increases hemichannel activity in hippocampal glial cells and neurons. Front Cell Neurosci. 2015;9:102.

Article  PubMed  PubMed Central  Google Scholar 

Yang S, Kong XY, Hu T, Ge YJ, Li XY, Chen JT, He S, Zhang P, Chen GH. Aquaporin-4, connexin-30, and connexin-43 as biomarkers for decreased objective sleep quality and/or cognition dysfunction in patients with chronic insomnia disorder. Front Psychiatry. 2022;13: 856867.

Article  PubMed  PubMed Central  Google Scholar 

Abudara V, Bechberger J, Freitas-Andrade M, De Bock M, Wang N, Bultynck G, Naus CC, Leybaert L, Giaume C. The connexin43 mimetic peptide Gap19 inhibits hemichannels without altering gap junctional communication in astrocytes. Front Cell Neurosci. 2014;21(8):306.

G

留言 (0)

沒有登入
gif