Effects of caffeine intake on pupillary parameters in humans: a systematic review and meta-analysis

Frary CD, Johnson RK, Wang MQ. Food sources and intakes of caffeine in the diets of persons in the United States. J Am Diet Assoc. 2005;105:110–3.

Article  PubMed  Google Scholar 

Verster JC, Koenig J. Caffeine intake and its sources: a review of national representative studies. Crit Rev Food Sci Nutr. 2018;58:1250–9.

Article  CAS  PubMed  Google Scholar 

Fredholm BB, Bättig K, Holmén J, Nehlig A, Zvartau EE. Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev. 1999;51:83–133.

CAS  PubMed  Google Scholar 

Schuster J, Mitchell ES. More than just caffeine: psychopharmacology of methylxanthine interactions with plant-derived phytochemicals. Prog Neuropsychopharmacol Biol Psychiatry. 2019;89:263–74.

Article  CAS  PubMed  Google Scholar 

Chaudhary NS, Grandner MA, Jackson NJ, Chakravorty S. Caffeine consumption, insomnia, and sleep duration: results from a nationally representative sample. Nutrition. 2016;32:1193–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Potter GDM, Cade JE, Grant PJ, Hardie LJ. Nutrition and the circadian system. Br J Nutr. 2016;116:434–42.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sherman H, Gutman R, Chapnik N, Meylan J, le Coutre J, Froy O. Caffeine alters circadian rhythms and expression of disease and metabolic markers. Int J Biochem Cell Biol. 2011;43:829–38.

Article  CAS  PubMed  Google Scholar 

Urry E, Landolt H-P. Adenosine, caffeine, and performance: from cognitive neuroscience of sleep to sleep pharmacogenetics. In: Meerlo P, Benca RM, Abel T, editors. Sleep, neuronal plasticity and brain function. Berlin: Springer Berlin Heidelberg; 2014. p. 331–66.

Chapter  Google Scholar 

Burke TM, Markwald RR, McHill AW, Chinoy ED, Snider JA, Bessman SC, et al. Effects of caffeine on the human circadian clock in vivo and in vitro. Sci Transl Med. 2015;7:305–146.

Article  Google Scholar 

Jha PK, Bouâouda H, Gourmelen S, Dumont S, Fuchs F, Goumon Y, et al. Sleep deprivation and caffeine treatment potentiate photic resetting of the master circadian clock in a diurnal rodent. J Neurosci. 2017;37:4343–58.

Article  CAS  PubMed  PubMed Central  Google Scholar 

van Diepen HC, Lucassen EA, Yasenkov R, Groenen I, Ijzerman AP, Meijer JH, et al. Caffeine increases light responsiveness of the mouse circadian pacemaker. Eur J Neurosci. 2014;40:3504–11.

Article  PubMed  Google Scholar 

Wright KP, Badia P, Myers BL, Plenzler SC, Hakel M. Caffeine and light effects on nighttime melatonin and temperature levels in sleep-deprived humans. Brain Res. 1997;747:78–84.

Article  CAS  PubMed  Google Scholar 

Wright K, Myers B, Plenzler S, Drake C, Badia P. Acute effects of bright light and caffeine on nighttime melatonin and temperature levels in women taking and not taking oral contraceptives. Brain Res. 2000;873:310–7.

Article  CAS  PubMed  Google Scholar 

Winn B, Whitaker D, Elliott DB, Phillips NJ. Factors affecting light-adapted pupil size in normal human subjects. Invest Ophthalmol Vis Sci. 1994;35:1132–7.

CAS  PubMed  Google Scholar 

Eto T, Ohashi M, Nagata K, Shin N, Motomura Y, Higuchi S. Crystalline lens transmittance spectra and pupil sizes as factors affecting light-induced melatonin suppression in children and adults. Ophthalmic Physiol Opt. 2021;41:900–10.

Article  PubMed  Google Scholar 

Guillon M, Dumbleton K, Theodoratos P, Gobbe M, Wooley CB, Moody K. The effects of age, refractive status, and luminance on pupil size. Optom Vis Sci. 2016;93:1093–100.

Article  PubMed  PubMed Central  Google Scholar 

Birren JE, Casperson RC, Botwinick J. Age changes in pupil size. J Gerontol. 1950;5:216–21.

Article  CAS  PubMed  Google Scholar 

Bradley JC, Bentley KC, Mughal AI, Bodhireddy H, Brown SM. Dark-adapted pupil diameter as a function of age measured with the NeurOptics pupillometer. J Refract Surg. 2011;27:202–7.

Article  PubMed  Google Scholar 

Loewenfeld IE, Lowenstein O. The pupil: anatomy, physiology, and clinical applications. Oxford: Butterworth-Heinemann; 1999.

Google Scholar 

McDougal DH, Gamlin PD. Autonomic control of the eye. Compr Physiol. 2015;5:439–73.

PubMed  PubMed Central  Google Scholar 

Hall C, Chilcott R. Eyeing up the future of the pupillary light reflex in neurodiagnostics. Diagnostics. 2018;8:19.

Article  PubMed  PubMed Central  Google Scholar 

Samuels ER, Szabadi E. Functional neuroanatomy of the noradrenergic locus coeruleus: its roles in the regulation of arousal and autonomic function part I: principles of functional organisation. Curr Neuropharmacol. 2008;6:235–53.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Samuels ER, Szabadi E. Functional neuroanatomy of the noradrenergic locus coeruleus: its roles in the regulation of arousal and autonomic function part II: physiological and pharmacological manipulations and pathological alterations of locus coeruleus activity in humans. Curr Neuropharmacol. 2008;6:254–85.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Grant SJ, Eugene RD. Methylxanthine activation of noradrenergic unit activity and reversal by clonidine. Eur J Pharmacol. 1982;85:105–9.

Article  CAS  PubMed  Google Scholar 

Berkowitz BA, Tarver JH, Spector S. Release of norepinephrine in the central nervous system by theophylline and caffeine. Eur J Pharmacol. 1970;10:64–71.

Article  CAS  PubMed  Google Scholar 

Karasawa T, Furukawa K, Yoshida K, Shimizu M. Effect of theophylline on monoamine metabolism in the rat brain. Eur J Pharmacol. 1976;37:97–104.

Article  CAS  PubMed  Google Scholar 

Smith A, Brice C, Nash J, Rich N, Nutt DJ. Caffeine and central noradrenaline: effects on mood, cognitive performance, eye movements and cardiovascular function. J Psychopharmacol. 2003;17:283–92.

Article  CAS  PubMed  Google Scholar 

Viglione A, Mazziotti R, Pizzorusso T. From pupil to the brain: new insights for studying cortical plasticity through pupillometry. Front Neural Circuits. 2023;17:1151847.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Do MTH. Melanopsin and the intrinsically photosensitive retinal ganglion cells: biophysics to behavior. Neuron. 2019;104:205–26.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Provencio I, Rodriguez IR, Jiang G, Hayes WP, Moreira EF, Rollag MD. A novel human opsin in the inner retina. J Neurosci. 2000;20:600–5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Spitschan M. Melanopsin contributions to non-visual and visual function. Curr Opin Behav Sci. 2019;30:67–72.

Article  PubMed  PubMed Central  Google Scholar 

Spitschan M, Jain S, Brainard DH, Aguirre GK. Opponent melanopsin and S-cone signals in the human pupillary light response. Proc Natl Acad Sci USA. 2014;111:15568–72.

Article

留言 (0)

沒有登入
gif