Mechanistic Implications of GSK and CREB Crosstalk in Ischemia Injury

Abdel-Aleem GA, Khaleel EF, Mostafa DG, Elberier LK (2016) Neuroprotective effect of resveratrol against brain ischemia reperfusion injury in rats entails reduction of DJ-1 protein expression and activation of PI3K/Akt/GSK3b survival pathway. Arch Physiol Biochem 122(4):200–213. https://doi.org/10.1080/13813455.2016.1182190

Article  CAS  PubMed  Google Scholar 

Arora B, Khan H, Grewal AK, Singh TG (2023) Mechanistic insights on the role of nitric oxide in ischemia-reperfusion injury. In Nitric Oxide in Health and Disease 275–285 Academic Press. https://doi.org/10.1016/B978-0-443-13342-8.00004-1

Bai H, Zhao L, Liu H, Guo H, Guo W, Zheng L, Liu X, Wu X, Luo J, Li X, Gao L (2018) Adiponectin confers neuroprotection against cerebral ischemia-reperfusion injury through activating the cAMP/PKA-CREB-BDNF signaling. Brain Res 143:145–154. https://doi.org/10.1016/j.brainresbull.2018.10.013

Article  CAS  Google Scholar 

Bangar A, Khan H, Kaur A, Dua K, Singh TG (2023) Understanding mechanistic aspect of the therapeutic role of herbal agents on neuroplasticity in cerebral ischemic-reperfusion injury. J Ethnopharmacol 117153. https://doi.org/10.1016/j.jep.2023.117153

Behl T, Kaur G, Sehgal A, Bhardwaj S, Singh S, Buhas C, Judea-Pusta C, Uivarosan D, Munteanu MA, Bungau S (2021a) Multifaceted role of matrix metalloproteinases in neurodegenerative diseases: pathophysiological and therapeutic perspectives. Int J Mol Sci 22(3):1413. https://doi.org/10.3390/ijms22031413

Article  CAS  PubMed  PubMed Central  Google Scholar 

Behl T, Kumar K, Brisc C, Rus M, Nistor-Cseppento DC, Bustea C, Aron RA, Pantis C, Zengin G, Sehgal A, Kaur R (2021b) Exploring the multifocal role of phytochemicals as immunomodulators. Biomed Pharmacother 133:110959. https://doi.org/10.1016/j.biopha.2020.110959

Article  CAS  PubMed  Google Scholar 

Beker M, Dallı T, Elibol B (2018) Thymoquinone can improve neuronal survival and promote neurogenesis in rat hippocampal neurons. Mol Nutr Food Res 62(5):1700768. https://doi.org/10.1002/mnfr.201700768

Article  CAS  Google Scholar 

Bell MT, Puskas F, Bennett DT, Herson PS, Quillinan N, Fullerton DA, Reece TB (2014) Dexmedetomidine, an α-2a adrenergic agonist, promotes ischemic tolerance in a murine model of spinal cord ischemia-reperfusion. J Thorac Cardiovasc Surg 147(1):500–507. https://doi.org/10.1016/j.jtcvs.2013.07.043

Article  CAS  PubMed  Google Scholar 

Beurel E, Grieco SF, Jope RS (2015) Glycogen synthase kinase-3 (GSK3): regulation, actions, and diseases. Pharmacol Ther 148:114–131. https://doi.org/10.1016/j.pharmthera.2014.11.016

Article  CAS  PubMed  Google Scholar 

Ceulemans LJ, Verbeke L, Decuypere JP, Farre R, De Hertogh G, Lenaerts K, Jochmans I, Monbaliu D, Nevens F, Tack J, Laleman W (2017) Farnesoid X receptor activation attenuates intestinal ischemia reperfusion injury in rats. PLoS ONE 12(1):e0169331. https://doi.org/10.1371/journal.pone.0169331

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chang PM, Li KL, Lin YC (2019) Fucoidan–fucoxanthin ameliorated cardiac function via IrS1/Grb2/SOS1, GSK3β/CREB pathways and metabolic pathways in senescent mice. Mar Drugs 17(1):69. https://doi.org/10.3390/md17010069

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen J, Wang W, Zhang Q, Li F, Lei T, Luo D, Zhou H, Yang B (2013) Low molecular weight fucoidan against renal ischemia-reperfusion injury via inhibition of the MAPK signaling pathway. PLoS ONE 8(2):e56224. https://doi.org/10.1007/s00424-018-2213-1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen R, Zhang YY, Lan JN, Liu HM, Li W, Wu Y, Leng Y, Tang LH, Hou JB, Sun Q, Sun T (2020) Ischemic postconditioning alleviates intestinal ischemia-reperfusion injury by enhancing autophagy and suppressing oxidative stress through the Akt/GSK-3β/Nrf2 pathway in mice. Oxid Med Cell Longev. https://doi.org/10.1155/2020/6954764

Chuang DM, Wang Z, Chiu CT (2011) GSK-3 as a target for lithium-induced neuroprotection against excitotoxicity in neuronal cultures and animal models of ischemic stroke. Front Mol Neurosci 4:15. https://doi.org/10.3389/fnmol.2011.00015

Article  CAS  PubMed  PubMed Central  Google Scholar 

Corb Aron RA, Abid A, Vesa CM, Nechifor AC, Behl T, Ghitea TC, Munteanu MA, Fratila O, Andronie-Cioara FL, Toma MM, Bungau S (2021) Recognizing the benefits of pre-/probiotics in metabolic syndrome and type 2 diabetes mellitus considering the influence of akkermansia muciniphila as a key gut bacterium. Microorganisms 9(3):618. https://doi.org/10.3390/microorganisms9030618

Article  CAS  PubMed  PubMed Central  Google Scholar 

Crack PJ, Wong CH (2008) Modulation of neuro-inflammation and vascular response by oxidative stress following cerebral ischemia-reperfusion injury. Curr Med Chem 15(1):1–4. https://doi.org/10.2174/092986708783330665

Article  PubMed  Google Scholar 

Das S, Cordis GA, Maulik N, Das DK (2005) Pharmacological preconditioning with resveratrol: role of CREB-dependent Bcl-2 signaling via adenosine A3 receptor activation. Am J Physiol Heart Circ Physiol 288(1):H328–H335. https://doi.org/10.1152/ajpheart.00453.2004

Article  CAS  PubMed  Google Scholar 

Ding C, Han F, Xiang H, Wang Y, Li Y, Zheng J, Xue W, Ding X, Tian P (2019) Probiotics ameliorate renal ischemia-reperfusion injury by modulating the phenotype of macrophages through the IL-10/GSK-3β/PTEN signaling pathway. Pflug Arch Eur J Physiol 471:573–581. https://doi.org/10.1007/s00424-018-2213-1

Article  CAS  Google Scholar 

Duarte-Silva E, Peixoto CA (2018) Molecular mechanisms of phosphodiesterase-5 inhibitors on neuronal apoptosis. DNA Cell Biol 37(11):861–865. https://doi.org/10.1089/dna.2018.4410

Article  CAS  PubMed  Google Scholar 

Engels J, Elting N, Braun L, Bendix I, Herz J, Felderhoff-Müser U, Dzietko M (2017) Sildenafil enhances quantity of immature neurons and promotes functional recovery in the developing ischemic mouse brain. Dev Neurosci 39(1–4):287–297. https://doi.org/10.1159/000457832

Article  CAS  PubMed  Google Scholar 

Evankovich J, Zhang R, Cardinal JS, Zhang L, Chen J, Huang H, Beer-Stolz D, Billiar TR, Rosengart MR, Tsung A (2012) Calcium/calmodulin-dependent protein kinase IV limits organ damage in hepatic ischemia-reperfusion injury through induction of autophagy. Am J Physiol Gastrointest Liver Physiol 303(2):G189–G198. https://doi.org/10.1152/ajpgi.00051.2012

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fan YD, Zhu ML, Geng D, Zhou K, Du GJ, Wang ZL (2018) The study on pathological mechanism and solution method for spinal cord ischemia reperfusion injury. Eur Rev Med Pharmacol Sci 22(13):4063–4068

PubMed  Google Scholar 

Fan X, Zhao Z, Wang D, Xiao J (2020) Glycogen synthase kinase-3 as a key regulator of cognitive function. Acta Biochim Biophys Sin 52(3):219–230. https://doi.org/10.1093/abbs/gmz156

Article  CAS  PubMed  Google Scholar 

Fan J, Chen Y, Song J (2021) Sevoflurance combined with xenon pretreatment protects against spinal cord ischemia-reperfusion injury in a rat model. Chin J Tissue Eng Res 25(23):3660. https://doi.org/10.12307/2021.036

Feng J, Lucchinetti E, Ahuja P, Pasch T, Perriard JC, Zaugg M (2005) Isoflurane postconditioning prevents opening of the mitochondrial permeability transition pore through inhibition of glycogen synthase kinase 3β. ASA 103(5):987–995. https://doi.org/10.1097/00000542-200511000-00013

Article  CAS  Google Scholar 

Fu H, Xu H, Chen H, Li Y, Li W, Zhu Q, Zhang Q, Yuan H, Liu F, Wang Q, Miao M (2014) Inhibition of glycogen synthase kinase 3 ameliorates liver ischemia/reperfusion injury via an energy-dependent mitochondrial mechanism. J Hepatol 61(4):816–824. https://doi.org/10.1016/j.jhep.2014.05.017

Article  CAS  PubMed  Google Scholar 

Fu J, Sun H, Wei H, Dong M, Zhang Y, Xu W, Fang Y, Zhao J (2020) Astaxanthin alleviates spinal cord ischemia-reperfusion injury via activation of PI3K/Akt/GSK-3β pathway in rats. J Orthop Surg Res 15(1):1–1. https://doi.org/10.1186/s13018-020-01790-8

Article  Google Scholar 

Garg C, Kaur A, Singh TG, Sharma VK, Singh SK (2022) Therapeutic implications of sonic hedgehog pathway in metabolic disorders: novel target for effective treatment. Pharmacol Res 179:106194. https://doi.org/10.1016/j.phrs.2022.106194

Article  CAS  PubMed  Google Scholar 

Gerace E, Scartabelli T, Pellegrini-Giampietro DE, Landucci E (2020) Tolerance induced by (S)-3, 5-dihydroxyphenylglycine postconditioning is mediated by the PI3K/Akt/GSK3β signalling pathway in an in vitro model of cerebral ischemia. Neuroscience 433:221–229. https://doi.org/10.1016/j.neuroscience.2019.12.047

Article  CAS  PubMed  Google Scholar 

Ghali GZ, Ghali MG (2020) Nafamostat mesylate attenuates the pathophysiologic sequelae of neurovascular ischemia. Neural Regen Res 15(12):2217. https://doi.org/10.4103/1673-5374.284981

Article  CAS  PubMed  PubMed Central  Google Scholar 

Girnar GA, Mahajan HS (2021) Cerebral ischemic stroke and different approaches for treatment of stroke. Future J Pharm Sci 7:1. https://doi.org/10.1186/s43094-021-00289-1

Article  Google Scholar 

Grewal AK, Singh N, Singh TG (2019a) Neuroprotective effect of pharmacological postconditioning on cerebral ischaemia–reperfusion-induced injury in mice. J Pharm Pharmacol 71(6):956–970. https://doi.org/10.1111/jphp.13073

Article  CAS  PubMed  Google Scholar 

Grewal AK, Singh N, Singh TG (2019b) Effects of resveratrol postconditioning on cerebral ischemia in mice: role of the sirtuin-1 pathway. Can J Physiol Pharmacol 97(11):1094–1101. https://doi.org/10.1139/cjpp-2019-0188

Article  CAS  PubMed  Google Scholar 

Gu L, Tao Y, Chen C, Ye Y, Xiong X, Sun Y (2018) Initiation of the inflammatory response after renal ischemia/reperfusion injury during renal transplantation. Int Urol Nephrol 50:2027–2035. https://doi.org/10.3390/biomedicines9030306

Article  CAS  PubMed  Google Scholar 

Gubernatorova EO, Perez-Chanona E, Koroleva EP, Jobin C, Tumanov AV (2016) Murine model of intestinal ischemia-reperfusion injury. J vis Exp 11(111):e53881. https://doi.org/10.3791/53881

Article  CAS 

留言 (0)

沒有登入
gif