Baluk P, Fuxe J, Hashizume H, Romano T, Lashnits E, Butz S, et al. Functionally specialized junctions between endothelial cells of lymphatic vessels. J Exp Med. 2007;204:2349–62.
Article CAS PubMed PubMed Central Google Scholar
Rahman M, Mohammed S. Breast cancer Metastasis and the lymphatic system. Oncol Lett. 2015;10:1233–9.
Article CAS PubMed PubMed Central Google Scholar
Rosen PR, Groshen S, Saigo PE, Kinne DW, Hellman S. A long-term follow-up study of survival in stage I (T1N0M0) and stage II (T1N1M0) breast carcinoma. J Clin Oncol. 1989;7:355–66.
Article CAS PubMed Google Scholar
Brabletz T, Kalluri R, Nieto MA, Weinberg RA. EMT in cancer. Nat Rev Cancer. 2018;18:128–34.
Article CAS PubMed Google Scholar
Yang J, Antin P, Berx G, Blanpain C, Brabletz T, Bronner M, et al. Guidelines and definitions for research on epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2020;21:341–52.
Article PubMed PubMed Central Google Scholar
Fuxe J, Karlsson MC. TGF-beta-induced epithelial-mesenchymal transition: a link between cancer and inflammation. Sem Cancer Biol. 2012;22:455–61.
Chod J, Zavadova E, Halaska MJ, Strnad P, Fucikova T, Rob L. Preoperative transforming growth factor-beta 1 (TGF-beta 1) plasma levels in operable Breast cancer patients. Eur J Gynaecol Oncol. 2008;29:613–6.
Dalal BI, Keown PA, Greenberg AH. Immunocytochemical localization of secreted transforming growth factor-beta 1 to the advancing edges of primary tumors and to lymph node metastases of human mammary carcinoma. Am J Pathol. 1993;143:381–9.
CAS PubMed PubMed Central Google Scholar
Fuxe J, Vincent T, Garcia de Herreros A. Transcriptional crosstalk between TGF-beta and stem cell pathways in Tumor cell invasion: role of EMT promoting smad complexes. Cell Cycle. 2010;9:2363–74.
Article CAS PubMed Google Scholar
Vincent T, Neve EP, Johnson JR, Kukalev A, Rojo F, Albanell J, et al. A SNAIL1-SMAD3/4 transcriptional repressor complex promotes TGF-beta mediated epithelial-mesenchymal transition. Nat Cell Biol. 2009;11:943–50.
Article CAS PubMed PubMed Central Google Scholar
Battula VL, Evans KW, Hollier BG, Shi Y, Marini FC, Ayyanan A, et al. Epithelial-mesenchymal transition-derived cells exhibit multilineage differentiation potential similar to mesenchymal stem cells. Stem Cells. 2010;28:1435–45.
Article CAS PubMed Google Scholar
Ishay-Ronen D, Diepenbruck M, Kalathur RKR, Sugiyama N, Tiede S, Ivanek R, et al. Gain Fat-Lose Metastasis: converting invasive Breast Cancer cells into Adipocytes inhibits Cancer Metastasis. Cancer Cell. 2019;35:17–32e16.
Article CAS PubMed Google Scholar
Johansson J, Tabor V, Wikell A, Jalkanen S, Fuxe J. TGF-beta1-Induced epithelial-mesenchymal transition promotes Monocyte/Macrophage properties in Breast Cancer cells. Front Oncol. 2015;5:3.
Article PubMed PubMed Central Google Scholar
Pang MF, Georgoudaki AM, Lambut L, Johansson J, Tabor V, Hagikura K, et al. TGF-beta1-induced EMT promotes targeted migration of Breast cancer cells through the lymphatic system by the activation of CCR7/CCL21-mediated chemotaxis. Oncogene. 2016;35:748–60.
Article CAS PubMed Google Scholar
Cabioglu N, Yazici MS, Arun B, Broglio KR, Hortobagyi GN, Price JE, et al. CCR7 and CXCR4 as novel biomarkers predicting axillary lymph node Metastasis in T1 Breast cancer. Clin Cancer Res. 2005;11:5686–93.
Article CAS PubMed Google Scholar
Shields JD, Fleury ME, Yong C, Tomei AA, Randolph GJ, Swartz MA. Autologous chemotaxis as a mechanism of Tumor cell homing to lymphatics via interstitial flow and autocrine CCR7 signaling. Cancer Cell. 2007;11:526–38.
Article CAS PubMed Google Scholar
Weitzenfeld P, Kossover O, Korner C, Meshel T, Wiemann S, Seliktar D, et al. Chemokine axes in Breast cancer: factors of the Tumor microenvironment reshape the CCR7-driven metastatic spread of luminal-A breast tumors. J Leukoc Biol. 2016;99:1009–25.
Article CAS PubMed Google Scholar
Sonbul SN, Gorringe KL, Aleskandarany MA, Mukherjee A, Green AR, Ellis IO, et al. Chemokine (C-C motif) receptor 7 (CCR7) associates with the tumour immune microenvironment but not progression in invasive breast carcinoma. J Pathol Clin Res. 2017;3:105–14.
Article CAS PubMed PubMed Central Google Scholar
Ando T, Jordan P, Joh T, Wang Y, Jennings MH, Houghton J, et al. Isolation and characterization of a novel mouse lymphatic endothelial cell line: SV-LEC. Lymphat Res Biol. 2005;3:105–15.
Article CAS PubMed Google Scholar
Nisato RE, Harrison JA, Buser R, Orci L, Rinsch C, Montesano R, et al. Generation and characterization of telomerase-transfected human lymphatic endothelial cells with an extended life span. Am J Pathol. 2004;165:11–24.
Article CAS PubMed PubMed Central Google Scholar
Nilchian A, Johansson J, Ghalali A, Asanin ST, Santiago A, Rosencrantz O, et al. CXADR-Mediated formation of an AKT inhibitory signalosome at tight junctions controls epithelial-mesenchymal plasticity in Breast Cancer. Cancer Res. 2019;79:47–60.
Article CAS PubMed Google Scholar
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40.
Article CAS PubMed Google Scholar
Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:44–57.
Huang da W, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009;37:1–13.
Miettinen PJ, Ebner R, Lopez AR, Derynck R. TGF-beta induced transdifferentiation of mammary epithelial cells to mesenchymal cells: involvement of type I receptors. J Cell Biol. 1994;127:2021–36.
Article CAS PubMed Google Scholar
Oft M, Peli J, Rudaz C, Schwarz H, Beug H, Reichmann E. TGF-beta1 and Ha-Ras collaborate in modulating the phenotypic plasticity and invasiveness of epithelial Tumor cells. Genes Dev. 1996;10:2462–77.
Article CAS PubMed Google Scholar
Huang Z, Yu P, Tang J. Characterization of Triple-negative Breast Cancer MDA-MB-231 cell spheroid model. Onco Targets Ther. 2020;13:5395–405.
Article CAS PubMed PubMed Central Google Scholar
Ringner M, Fredlund E, Hakkinen J, Borg A, Staaf J. GOBO: gene expression-based outcome for Breast cancer online. PLoS ONE. 2011;6:e17911.
Article CAS PubMed PubMed Central Google Scholar
Asiedu MK, Ingle JN, Behrens MD, Radisky DC, Knutson KL. TGFbeta/TNF(alpha)-mediated epithelial-mesenchymal transition generates Breast cancer stem cells with a claudin-low phenotype. Cancer Res. 2011;71:4707–19.
Article CAS PubMed PubMed Central Google Scholar
Mercogliano MF, Bruni S, Elizalde PV, Schillaci R. Tumor necrosis factor alpha blockade: an opportunity to tackle Breast Cancer. Front Oncol. 2020;10:584.
Article PubMed PubMed Central Google Scholar
Tsang JY, Ni YB, Chan SK, Shao MM, Kwok YK, Chan KW, et al. CX3CL1 expression is associated with poor outcome in Breast cancer patients. Breast Cancer Res Treat. 2013;140:495–504.
Article CAS PubMed Google Scholar
Tardaguila M, Mira E, Garcia-Cabezas MA, Feijoo AM, Quintela-Fandino M, Azcoitia I, et al. CX3CL1 promotes Breast cancer via transactivation of the EGF pathway. Cancer Res. 2013;73:4461–73.
Article CAS PubMed PubMed Central Google Scholar
Lin S, Sun L, Hu J, Wan S, Zhao R, Yuan S, et al. Chemokine C-X-C motif receptor 6 contributes to cell migration during hypoxia. Cancer Lett. 2009;279:108–17.
Article CAS PubMed Google Scholar
Kim HR, Hwang KA, Park SH, Kang I. IL7 and IL15: biology and roles in T-Cell immunity in health and Disease. Crit Rev Immunol. 2008;28:325–39.
Iolyeva M, Aebischer D, Proulx ST, Willrodt AH, Ecoiffier T, Haner S, et al. Interleukin-7 is produced by afferent lymphatic vessels and supports lymphatic drainage. Blood. 2013;122:2271–81.
留言 (0)