Impact of Platelet-Rich Plasma and Adipose-Derived Stromal Vascular Fraction on Atrophic Non-union Fracture Healing in a Rabbit Model

Kalfas IH. Principles of bone healing. Neurosurg Focus. 2001;10(4):E1. https://doi.org/10.3171/foc.2001.10.4.2.

Article  CAS  Google Scholar 

Mousaei Ghasroldasht M, Matin MM, Kazemi Mehrjerdi H, Naderi-Meshkin H, Moradi A, Rajabioun M, Alipour F, Ghasemi S, Zare M, Mirahmadi M, Bidkhori HR, Bahrami AR. Application of mesenchymal stem cells to enhance non-union bone fracture healing. J Biomed Mater Res A. 2019;107(2):301–11. https://doi.org/10.1002/jbm.a.36441. Epub 2018 Nov 12

Article  CAS  Google Scholar 

Wang W, Yeung KWK. Bone grafts and biomaterials substitutes for bone defect repair: a review. Bioact Mater. 2017;2(4):224–47. https://doi.org/10.1016/j.bioactmat.2017.05.007.

Article  Google Scholar 

Zwingenberger S, Nich C, Valladares RD, Yao Z, Stiehler M, Goodman SB. Recommendations and considerations for the use of biologics in orthopedic surgery. BioDrugs. 2012;26(4):245–56. https://doi.org/10.2165/11631680-000000000-00000.

Article  CAS  Google Scholar 

Foster TE, Puskas BL, Mandelbaum BR, Gerhardt MB, Rodeo SA. Platelet-rich plasma: from basic science to clinical applications. Am J Sports Med. 2009;37(11):2259–72. https://doi.org/10.1177/0363546509349921.

Article  Google Scholar 

Fernandes G, Yang S. Application of platelet-rich plasma with stem cells in bone and periodontal tissue engineering. Bone Res. 2016;13(4):16036. https://doi.org/10.1038/boneres.2016.36.

Article  CAS  Google Scholar 

Undale AH, Westendorf JJ, Yaszemski MJ, Khosla S. Mesenchymal stem cells for bone repair and metabolic bone diseases. Mayo Clin Proc. 2009;84(10):893–902. https://doi.org/10.1016/S0025-6196(11)60506-5.

Article  CAS  Google Scholar 

Kim A, Kim DH, Song HR, Kang WH, Kim HJ, Lim HC, Cho DW, Bae JH. Repair of rabbit ulna segmental bone defect using freshly isolated adipose-derived stromal vascular fraction. Cytotherapy. 2012;14(3):296–305. https://doi.org/10.3109/14653249.2011.627915. Epub 2011 Nov 18. Erratum in: Cytotherapy. 2012 Mar;14(3):305

Article  CAS  Google Scholar 

Overman JR, Helder MN, ten Bruggenkate CM, Schulten EA, Klein-Nulend J, Bakker AD. Growth factor gene expression profiles of bone morphogenetic protein-2-treated human adipose stem cells seeded on calcium phosphate scaffolds in vitro. Biochimie. 2013;95(12):2304–13. https://doi.org/10.1016/j.biochi.2013.08.034. Epub 2013 Sep 9

Article  CAS  Google Scholar 

Prins HJ, Schulten EA, Ten Bruggenkate CM, Klein-Nulend J, Helder MN. Bone regeneration using the freshly isolated autologous stromal vascular fraction of adipose tissue in combination with calcium phosphate ceramics. Stem Cells Transl Med. 2016;5(10):1362–74. https://doi.org/10.5966/sctm.2015-0369.

Article  CAS  Google Scholar 

Sharun K, Pawde AM, Banu SA, Manjusha KM, Kalaiselvan E, Kumar R, Kinjavdekar P, Amarpal. Development of a novel atrophic non-union model in rabbits: a preliminary study. Ann Med Surg (Lond). 2021a;14(68):102558. https://doi.org/10.1016/j.amsu.2021.102558.

Article  Google Scholar 

Sharun K, Pawde AM, Kumar R, Kalaiselvan E, Kinjavdekar P, Dhama K, Pal A. Standardization and characterization of adipose-derived stromal vascular fraction from New Zealand white rabbits for bone tissue engineering. Vet World. 2021b;14(2):508–14. https://doi.org/10.14202/vetworld.2021.508-514.

Article  Google Scholar 

Sharun K, Pawde AM, Manjusha KM, Banu SA, Kalaiselvan E, Kumar R, Kinjavdekar P. Amarpal, Verma MR. Classification and coding of platelet-rich plasma derived from New Zealand white rabbits for tissue engineering and regenerative medicine applications. Expert Opin Biol Ther. 2021c;21(11):1473–82. https://doi.org/10.1080/14712598.2021.1955099.

Article  CAS  Google Scholar 

Udehiya RK, Amarpal AHP, Kinjavdekar P, Pawde AM, Singh R, Taru SG. Comparison of autogenic and allogenic bone marrow derived mesenchymal stem cells for repair of segmental bone defects in rabbits. Res Vet Sci. 2013;94(3):743–52. https://doi.org/10.1016/j.rvsc.2013.01.011.

Article  CAS  Google Scholar 

Lane JM, Sandhu HS. Current approaches to experimental bone grafting. Orthop Clin North Am. 1987;18(2):213–25.

Article  CAS  Google Scholar 

Heiple KG, Goldberg VM, Powell AE, Bos GD, Zika JM. Biology of cancellous bone grafts. Orthop Clin North Am. 1987;18(2):179–85.

Article  CAS  Google Scholar 

Fayaz HC, Giannoudis PV, Vrahas MS, Smith RM, Moran C, Pape HC, Krettek C, Jupiter JB. The role of stem cells in fracture healing and non-union. Int Orthop. 2011;35(11):1587–97. https://doi.org/10.1007/s00264-011-1338-z.

Article  Google Scholar 

Hollinger JO, Kleinschmidt JC. The critical size defect as an experimental model to test bone repair materials. J Craniofac Surg. 1990;1(1):60–8. https://doi.org/10.1097/00001665-199001000-00011.

Article  CAS  Google Scholar 

Oryan A, Meimandi Parizi A, Shafiei-Sarvestani Z, Bigham AS. Effects of combined hydroxyapatite and human platelet rich plasma on bone healing in rabbit model: radiological, macroscopical, hidtopathological and biomechanical evaluation. Cell Tissue Bank. 2012;13(4):639–51. https://doi.org/10.1007/s10561-011-9285-x. Epub 2011 Dec 18

Article  CAS  Google Scholar 

Parizi AM, Oryan A, Shafiei-Sarvestani Z, Bigham AS. Human platelet rich plasma plus Persian Gulf coral effects on experimental bone healing in rabbit model: radiological, histological, macroscopical and biomechanical evaluation. J Mater Sci Mater Med. 2012;23(2):473–83. https://doi.org/10.1007/s10856-011-4478-1. Epub 2011 Nov 5

Article  CAS  Google Scholar 

Kasten P, Vogel J, Geiger F, Niemeyer P, Luginbühl R, Szalay K. The effect of platelet-rich plasma on healing in critical-size long-bone defects. Biomaterials. 2008;29(29):3983–92. https://doi.org/10.1016/j.biomaterials.2008.06.014.

Article  CAS  Google Scholar 

Maiti SK, Shivakumar MU, Mohan D, Kumar N, Singh KP. Mesenchymal stem cells of different origin-seeded bioceramic construct in regeneration of bone defect in rabbit. Tissue Eng Regen Med. 2018;15(4):477–92. https://doi.org/10.1007/s13770-018-0129-7.

Article  CAS  Google Scholar 

Zamani Mazdeh D, Mirshokraei P, Emami M, Mirshahi A, Karimi I. 17β-estradiol improves the efficacy of exploited autologous bone marrow-derived mesenchymal stem cells in non-union radial defect healing: a rabbit model. Res Vet Sci. 2018;118:11–8. https://doi.org/10.1016/j.rvsc.2017.12.024.

Article  CAS  Google Scholar 

Tawonsawatruk T, West CC, Murray IR, Soo C, Péault B, Simpson AH. Adipose derived pericytes rescue fractures from a failure of healing--non-union. Sci Rep. 2016;21(6):22779. https://doi.org/10.1038/srep22779.

Article  CAS  Google Scholar 

Orth M, Kruse NJ, Braun BJ, Scheuer C, Holstein JH, Khalil A, Yu X, Murphy WL, Pohlemann T, Laschke MW, Menger MD. BMP-2-coated mineral coated microparticles improve bone repair in atrophic non-unions. Eur Cell Mater. 2017;2(33):1–12. https://doi.org/10.22203/eCM.v033a01.

Article  Google Scholar 

Lappalainen OP. Healing of cranial critical sized defects with grafts, stem cells, growth factors and bio-materials, vol. 1386. Oulu: Ouluensis Universitas; 2016. p. 1–16.

Google Scholar 

Shah AM, Jung H, Skirboll S. Materials used in cranioplasty: a history and analysis. Neurosurg Focus. 2014;36(4):E19. https://doi.org/10.3171/2014.2.FOCUS13561.

Article  Google Scholar 

Titsinides S, Agrogiannis G, Karatzas T. Bone grafting materials in dentoalveolar reconstruction: a comprehensive review. Jpn Dent Sci Rev. 2019;55(1):26–32. https://doi.org/10.1016/j.jdsr.2018.09.003.

Article  CAS  Google Scholar 

Zakaria Z, Seman CN, Buyong Z, Sharifudin MA, Zulkifly AH, Khalid KA. Histological evaluation of hydroxyapatite granules with and without platelet-rich plasma versus an autologous bone graft: comparative study of biomaterials used for spinal fusion in a New Zealand white rabbit model. Sultan Qaboos Univ Med J. 2016;16(4):e422–9. https://doi.org/10.18295/squmj.2016.16.04.004.

Article  Google Scholar 

Shahsavari-Pour S, Aliabadi E, Latifi M, Zareifard N, Namavar MR, Talaei-Khozani T. Evaluation of the possible synergic regenerative effects of platelet-rich plasma and hydroxyapatite/zirconia in the rabbit mandible defect model. Iran. J Med Sci. 2018;43(6):633–44.

Google Scholar 

Casati L, Celotti F, Negri-Cesi P, Sacchi MC, Castano P, Colciago A. Platelet derived growth factor (PDGF) contained in platelet rich plasma (PRP) stimulates migration of osteoblasts by reorganizing actin cytoskeleton. Cell Adh Migr. 2014;8(6):595–602. https://doi.org/10.4161/19336918.2014.972785.

Article  Google Scholar 

Broggini N, Hofstetter W, Hunziker E, Bosshardt DD, Bornstein MM, Seto I, Weibrich G, Buser D. The influence of PRP on early bone formation in membrane protected defects. A histological and histomorphometric study in the rabbit calvaria. Clin Implant Dent Relat Res. 2011;13(1):1–12. https://doi.org/10.1111/j.1708-8208.2009.00266.x.

Article  Google Scholar 

Kanthan SR, Kavitha G, Addi S, Choon DS, Kamarul T. Platelet-rich plasma (PRP) enhances bone healing in non-united critical-sized defects: a preliminary study involving rabbit models. Injury. 2011;42(8):782–9. https://doi.org/10.1016/j.injury.2011.01.015.

Article  CAS  Google Scholar 

Malhotra R, Kumar V, Garg B, Singh R, Jain V, Coshic P, Chatterjee K. Role of autologous platelet-rich plasma in treatment of long-bone nonunions: a prospective study. Musculoskelet Surg. 2015;99(3):243–8. https://doi.org/10.1007/s12306-015-0378-8. Epub 2015 Jul 21

Article  CAS  Google Scholar 

Say F, Türkeli E, Bülbül M. Is platelet-rich plasma injection an effective choice in cases of non-union? Acta Chir Orthop Traumatol Cech. 2014;81(5):340–5.

Article  CAS  Google Scholar 

Chahla J, Cinque ME, Piuzzi NS, Mannava S, Geeslin AG, Murray IR, Dornan GJ, Muschler GF, LaPrade RF. A call for standardization in platelet-rich plasma preparation protocols and composition reporting: a systematic review of the clinical orthopaedic literature. J Bone Joint Surg Am. 2017;99(20):1769–79. https://doi.org/10.2106/JBJS.16.01374.

Article  Google Scholar 

Gianakos A, Zambrana L, Savage-Elliott I, Lane JM, Kennedy JG. Platelet-rich plasma in the animal long-bone model: an analysis of basic science evidence. Orthopedics. 2015;38(12):e1079–90. https://doi.org/10.3928/01477447-20151120-04.

Article  Google Scholar 

Rossi LA, Murray IR, Chu CR, Muschler GF, Rodeo SA, Piuzzi NS. Classification systems for platelet-rich plasma. Bone Joint J. 2019;101-B(8):891–6. https://doi.org/10.1302/0301-620X.101B8.BJJ-2019-0037.R1.

Article  CAS  Google Scholar 

Jeong W, Kim YS, Roh TS, Kang EH, Jung BK, Yun IS. The effect of combination therapy on critical-size bone defects using non-activated platelet-rich plasma and adipose-derived stem cells. Childs Nerv Syst. 2020;36(1):145–51. https://doi.org/10.1007/s0038

留言 (0)

沒有登入
gif