Type I Collagen/Hyaluronic Acid Hydrogels as Delivery System for Adipose-Derived Stem Cells for Osteoarthritis Treatment

Kotlarz H, Gunnarsson CL, Fang H, Rizzo JA. Insurer and out-of-pocket costs of osteoarthritis in the US: evidence from national survey data. Arthritis Rheum. 2009;60:3546–53.

Article  Google Scholar 

Kuyinu EL, Narayanan G, Nair LS, Laurencin CT. Animal models of osteoarthritis: classification, update, and measurement of outcomes. J Orthop Surg Res. 2016;11:19-.

Article  Google Scholar 

Glyn-Jones S, Palmer AJR, Agricola R, Price AJ, Vincent TL, Weinans H, Carr AJ. Osteoarthritis. Lancet. 2015;386:376–87.

Article  CAS  Google Scholar 

Kapoor M, Martel-Pelletier J, Lajeunesse D, Pelletier J-P, Fahmi H. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat Rev Rheumatol. 2010;7:33.

Article  Google Scholar 

Wang Q, Rozelle AL, Lepus CM, Scanzello CR, Song JJ, Larsen DM, Crish JF, Bebek G, Ritter SY, Lindstrom TM, Hwang I, Wong HH, Punzi L, Encarnacion A, Shamloo M, Goodman SB, Wyss-Coray T, Goldring SR, Banda NK, Thurman JM, Gobezie R, Crow MK, Holers VM, Lee DM, Robinson WH. Identification of a central role for complement in osteoarthritis. Nat Med. 2011;17:1674.

Article  CAS  Google Scholar 

Murab S, Chameettachal S, Bhattacharjee M, Das S, Kaplan DL, Ghosh S. Matrix-embedded cytokines to simulate osteoarthritis-like cartilage microenvironments. Tissue Eng Part A. 2013;19(15–16):1733–53. https://doi.org/10.1089/ten.tea.2012.0385.

Article  CAS  Google Scholar 

Haywood L, McWilliams DF, Pearson CI, Gill SE, Ganesan A, Wilson D, Walsh DA. Inflammation and angiogenesis in osteoarthritis. Arthritis Rheum. 2003;48:2173–7.

Article  CAS  Google Scholar 

Benito MJ, Veale DJ, FitzGerald O, van den Berg WB, Bresnihan B. Synovial tissue inflammation in early and late osteoarthritis. Ann Rheum Dis. 2005;64:1263.

Article  CAS  Google Scholar 

Bhattacharjeea M, Coburnb J, Centolacd M, Muraba S, Barberocd A, Kaplan DL, Martincd I, Ghosh S. Tissue engineering strategies to study cartilage development, degeneration and regeneration. Adv Drug Deliv Rev. 2015;84:107–22.

Article  Google Scholar 

Escobar Ivirico JL, Bhattacharjee M, Kuyinu E, Nair LS, Laurencin CT. Regenerative engineering for knee osteoarthritis treatment: biomaterials and cell-based technologies. Engineering. 2017;3(1):16–27.

Article  Google Scholar 

Shah S, Otsuka T, Bhattacharjee M, Laurencin CT. Minimally invasive cellular therapies for osteoarthritis treatment. Regen Eng Transl Med. 2021;7:76–90.

Article  Google Scholar 

Harrell CR, Markovic BS, Fellabaum C, Arsenijevic A, Volarevic V. Mesenchymal stem cell-based therapy of osteoarthritis: current knowledge and future perspectives. Biomed Pharmacother. 2019;109:2318–26.

Article  CAS  Google Scholar 

Narayanan G, Bhattacharjee M, Nair LS, et al. Musculoskeletal tissue regeneration: the role of the stem cells. Regen Eng Transl Med. 2017;3:133–65.

Article  Google Scholar 

Fodor PB, Paulseth SG. Adipose derived stromal cell (ADSC) injections for pain management of osteoarthritis in the human knee joint. Aesthet Surg J. 2016;36:229–36.

Article  Google Scholar 

Daneshmandi L, Shah S, Jafari T, Bhattacharjee M, Momah D, Saveh-Shemshaki N, Lo KW-H, Laurencin CT. Emergence of the stem cell secretome in regenerative engineering. Trends Biotechnol. 38(12):1373–1384. https://doi.org/10.1016/j.tibtech.2020.04.013.

Jo CH, Lee YG, Shin WH, Kim H, Chai JW, Jeong EC, Kim JE, Shim H, Shin JS, Shin IS, Ra JC, Oh S, Yoon KS. Intra-articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: a proof-of-concept clinical trial. Stem Cells. 2014;32:1254–66.

Article  CAS  Google Scholar 

Baldari S, Di Rocco G, Piccoli M, Pozzobon M, Muraca M, Toietta G. Challenges and strategies for improving the regenerative effects of mesenchymal. Int J Mol Sci. 2017;18(10):2087. https://doi.org/10.3390/ijms18102087.

Article  CAS  Google Scholar 

Vinatier C, Bouffi C, Merceron C, Gordeladze J, Brondello JM, Jorgensen C, et al. Cartilage tissue engineering: towards a biomaterial-assisted mesenchymal stem cell therapy. Curr Stem Cell Res Ther. 2009;4(4):318–29.

Article  CAS  Google Scholar 

Liang K, Bae KH, Kurisawa M. Recent advances in the design of injectable hydrogels for stem cell-based therapy. J Mater Chem B. 2019;7:3775–91.

Article  CAS  Google Scholar 

Watterson JR, Esdaile JM. Viscosupplementation: therapeutic mechanisms and clinical potential in osteoarthritis of the knee. J Am Acad Orthop Surg. 2000;8:277–84.

Article  CAS  Google Scholar 

Knudson CB. Hyaluronan and CD44: strategic players for cell-matrix interactions during chondrogenesis and matrix assembly. Birth Defects Res Part C - Embryo Today Rev. 2003;69:174–96.

Article  CAS  Google Scholar 

Trombino S, Servidio C, Curcio F, Cassano R. Strategies for hyaluronic acid-based hydrogel design in drug delivery. Pharmaceutics. 2019;11(8):407. https://doi.org/10.3390/pharmaceutics11080407.

Article  CAS  Google Scholar 

Antich C, Vicente J, Jiménez G, Chocarro C, Carrillo E, Montañez E, Gálvez-Martíngh P, Marchal JA. Bio-inspired hydrogel composed of hyaluronic acid and alginate as a potential bioink for 3D bioprinting of articular cartilage engineering constructs. Acta Biomater. 2020;106:114–12.

Article  CAS  Google Scholar 

Mazzocchi A, Devarasetty M, Huntwork R, Soker S, Skardal A. Optimization of collagen type I-hyaluronan hybrid bioink for 3D bioprinted liver microenvironments. Biofabrication. 2018;11(1):015003. https://doi.org/10.1088/1758-5090/aae543

Law N, Doney B, Glover H, Qin Y, Aman ZM, Sercombe TB, Liew LJ, Dilley RJ, Doyle BJ. Characterisation of hyaluronic acid methylcellulose hydrogels for 3D bioprinting. J Mech Behav Biomed Mater. 2018;77:389–99.

Article  CAS  Google Scholar 

Zhu J, Kaufman LJ. Collagen I self-assembly: revealing the developing structures that generate turbidity. Biophys J. 2014;106(8):1822–31.

Article  CAS  Google Scholar 

Lynn AK, Yannas IV, Bonfield W. Antigenicity and immunogenicity of collagen. J Biomed Mater Res B Appl Biomater. 2004;71:343–54.

Article  CAS  Google Scholar 

Radhakrishnan S, Nagarajan S, Bechelany M, Kalkura SN. Collagen based biomaterials for tissue engineering applications: a review. Cham: Springer International Publishing; 2020. p. 3–22.

Google Scholar 

Irawan V, Sung TC, Higuchi A, Ikoma T. Collagen scaffolds in cartilage tissue engineering and relevant approaches for future development. Tissue Eng Regen Med. 2018;15(6):673–97.

Article  CAS  Google Scholar 

Andereya S, Maus U, Gavenis K, Muller-Rath R, Miltner O, Mumme T. First clinical experiences with a novel 3D-collagen gel (CaRes(R)) for the treatment of focal cartilage defects in the knee. Z Orthrop Ihre Grenzgev. 2006;144:272–80. https://doi.org/10.1055/s-2006-933445.

Article  CAS  Google Scholar 

Kilmer CE, Battistoni CM, Cox A, Breur GJ, Panitch A, Liu JC. Collagen type I and II blend hydrogel with autologous mesenchymal stem cells as a scaffold for articular cartilage defect repair. ACS Biomater Sci Eng. 2020;6(6):3464–76.

Article  CAS  Google Scholar 

Freytes DO, Martin J, Velankar SS, Lee AS, Badylak SF. Preparation and rheological characterization of a gel form of the porcine urinary bladder matrix. Biomaterials. 2008;29:1630–7.

Article  CAS  Google Scholar 

Bhattacharjee M, Ivirico JLE, Kan HM, et al. Preparation and characterization of amnion hydrogel and its synergistic effect with adipose derived stem cells towards IL1β activated chondrocytes. Sci Rep. 2020;10:18751. https://doi.org/10.1038/s41598-020-75921-w.

Article  CAS  Google Scholar 

Naveen N, Christopher JM, Maumita B, Lakshmi N, Cato TL. Development of tripolymeric triaxial electrospun fibrous matrices for dual drug delivery applications. Scientific Reports. 2020; 10:609.

Bhattacharjee M, et al. The role of 3D structure and protein conformation on the innate and adaptive immune responses to silk-based biomaterials. Biomaterials. 2013;34:8161–71.

Article  CAS  Google Scholar 

Adães S, Mendonça M, Santos TN, Castro-Lopes JM, Ferreira-Gomes J, Neto FL. Intra-articular injection of collagenase in the knee of rats as an alternative model to study nociception associated with osteoarthritis. Arthritis Res Ther. 2014;16(1):R10. https://doi.org/10.1186/ar4436.

Article  Google Scholar 

Lungu A, Titorencu I, Albu MG, Florea NM, Vasile E, Iovu H, Jinga V, Simionescu M. The effect of Bmp-4 loaded in 3d collagen-hyaluronic acid scaffolds on biocompatibility assessed with Mg 63 osteoblast-like cells. Dig J Nanomater Biostruct. 2011;6(4):1897–908.

Google Scholar 

de Campos Vidal B, Mello MLS. Collagen type I amide I band infrared spectroscopy. Micron. 2011;42(3):283–9.

Article  Google Scholar 

Hafsa J, Chaouch MA, Charfeddine B, Rihouey C, Limem K, Le Cerf D, Rouatbi S, Majdoub H. Effect of ultrasonic degradation of hyaluronic acid extracted from rooster comb on antioxidant and antiglycation activities. Pharmaceut Biol. 2017;55(1):156–163. https://doi.org/10.1080/13880209.2016.1232740

Sylvester MF, Yannas IV, Salzman EW, Forbes MJ. Collagen banded fibril structure and the collagen-platelet reaction. Thromb Res. 1989;55:135–48.

Article  CAS  Google Scholar 

Tronci G, Doyle A, Russell SJ, Wood DJ. Triple-helical collagen hydrogels via covalent aromatic functionalization with 1,3-phenylenediacetic acid. J Mater Chem B. 2013;1:5478–88.

Article  CAS  Google Scholar 

Bhattacharjee M, Escobar Ivirico JL, Kan HM, Shah S, Otsuka T, Bordett R, Barajaa M, Nagiah N, Pandey R, Nair LS, Laurencin CT. Injectable amnion hydrogel-mediated delivery of adipose-derived stem cells for osteoarthritis treatment. Proc Natl Acad Sci U S A. 2022;119(4):e2120968119. https://doi.org/10.1073/pnas.2120968119.

Article  CAS  Google Scholar 

Montalbano G, Toumpaniari S, Popov A, Duan P, Chen J, Dalgarno K, Scott WE, Ferreira AM. Synthesis of bioinspired collagen/alginate/fibrin based hydrogels for soft tissue engineering. Mater Sci Eng, C. 2018;91:236–46.

Article  CAS  Google Scholar 

Sionkowska A. Current research on the blends of natural and synthetic polymers as new biomaterials: review. Prog Polym Sci. 2011;36:1254–76.

Article  CAS  Google Scholar 

Nikolaeva TI, Tiktopulo EI, Polozov RV, Rochev YA. Thermodynamic and structural characteristics of collagen fibrils formed in vitro at different temperatures and concentrations. Biophysics. 2007;52:191–5.

Article  Google Scholar 

Kuo SM, Wang YJ, Niu GC, Lu HE, Chang SJ. Influences of hyaluronan on type II collagen fibrillogenesis in vitro. J Mater Sci Mater Med. 2008;19(3):1235–41. https://doi.org/10.1007/s10856-007-3205-4.

Article 

留言 (0)

沒有登入
gif