Polymeric Hydrogel Sponges for Wound Healing Applications: A Comprehensive Review

Zhang X, Qin M, Xu M, Miao F, Merzougui C, Zhang X, Wei Y, Chen W, Huang D. The fabrication of antibacterial hydrogels for wound healing. Eur Polymer J. 2021;146:110268. https://doi.org/10.1016/j.eurpolymj.2021.110268.

Article  CAS  Google Scholar 

Singh S, Chittasupho C, Prajapati BG, Chandel AS. Editorial: Biodegradable polymeric materials in tissue engineering and their application in drug delivery. Front Bioeng Biotechnol 2023;11, https://doi.org/10.3389/fbioe.2023.1296119.

Abd El-Hack ME, El-Saadony MT, Shafi ME, Zabermawi NM, Arif M, Batiha GE, Khafaga AF, Abd El-Hakim YM, Al-Sagheer AA. Antimicrobial and antioxidant properties of chitosan and its derivatives and their applications: a review. Int J Biol Macromol. 2020;164:2726–44. https://doi.org/10.1016/j.ijbiomac.2020.08.153.

Article  CAS  PubMed  Google Scholar 

Gaharwar AK, Singh I, Khademhosseini A. Engineered biomaterials for in situ tissue regeneration. Nat Rev Mater. 2020;5:686–705. https://doi.org/10.1038/s41578-020-0209-x.

Article  CAS  Google Scholar 

Liang Y, He J, Guo B. Functional hydrogels as wound dressing to enhance wound healing. ACS Nano. 2021;15:12687–722. https://doi.org/10.1021/acsnano.1c04206.

Article  CAS  PubMed  Google Scholar 

Tottoli EM, Dorati R, Genta I, Chiesa E, Pisani S, Conti B. Skin wound healing process and new emerging technologies for skin wound care and regeneration. Pharmaceutics 2020, 12, https://doi.org/10.3390/pharmaceutics12080735.

Singh SA, Vellapandian C, Shah DD, Jayeoye TJ, Chorawala MR, Singh S, Prajapati BG. Valorised calcium-rich biomass from fish waste and eggshells in the fabrication of antibacterial scaffold for wound healing applications: a review. Waste and Biomass Valorization 2023. https://doi.org/10.1007/s12649-023-02302-5

Wilkinson HN, Hardman MJ. Wound healing: cellular mechanisms and pathological outcomes. Open Biol. 2020;10: 200223. https://doi.org/10.1098/rsob.200223.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Robert AW, Azevedo Gomes F, Rode MP, Marques da Silva M, Veleirinho MBdR, Maraschin M, Hayashi L, Wosgrau Calloni G, Stimamiglio MA. The skin regeneration potential of a pro-angiogenic secretome from human skin-derived multipotent stromal cells. J Tissue Eng 2019;10:2041731419833391, https://doi.org/10.1177/2041731419833391.

Feng P, Luo Y, Ke C, Qiu H, Wang W, Zhu Y, Hou R, Xu L, Wu S. Chitosan-based functional materials for skin wound repair: mechanisms and applications. Front Bioeng Biotechnol 2021;9.

Ontong JC, Singh S, Siriyong T, Voravuthikunchai SP. Transferosomes stabilized hydrogel incorporated rhodomyrtone-rich extract from Rhodomyrtus tomentosa leaf fortified with phosphatidylcholine for the management of skin and soft-tissue infections. Biotech Lett. 2024;46:127–42. https://doi.org/10.1007/s10529-023-03452-1.

Article  CAS  Google Scholar 

Xiang J, Shen L, Hong Y. Status and future scope of hydrogels in wound healing: synthesis, materials and evaluation. Eur Polymer J. 2020;130:109609. https://doi.org/10.1016/j.eurpolymj.2020.109609.

Article  CAS  Google Scholar 

Ayoubi-Joshaghani MH, Seidi K, Azizi M, Jaymand M, Javaheri T, Jahanban-Esfahlan R, Hamblin MR. Potential applications of advanced nano/hydrogels in biomedicine: static, dynamic, multi-stage, and bioinspired. Adv Func Mater. 2020;30:2004098. https://doi.org/10.1002/adfm.202004098.

Article  CAS  Google Scholar 

Tyeb S, Kumar N, Kumar A, Verma V. Flexible agar-sericin hydrogel film dressing for chronic wounds. Carbohyd Polym. 2018;200:572–82. https://doi.org/10.1016/j.carbpol.2018.08.030.

Article  CAS  Google Scholar 

Li X, Wan L, Zhu T, Li R, Zhang M, Lu H. Biomimetic liquid crystal-modified mesoporous silica–based composite hydrogel for soft tissue repair. J Function Biomater 2023;14, https://doi.org/10.3390/jfb14060316.

Long X, Xu X, Sun D, Hong Y, Wen C, Xie Y, Yan B, Zhang H, Ge Q, Li W, et al. Biomimetic macroporous hydrogel with a triple-network structure for full-thickness skin regeneration. Appl Mater Today. 2022;27: 101442. https://doi.org/10.1016/j.apmt.2022.101442.

Article  Google Scholar 

Ontong JC, Singh S, Siriyong T, Voravuthikunchai SP. Value-added natural colorants from Oryza sativa L. and Eleutherine americana (L.) Merr. waste as a safe alternative for remedial cosmeceutical applications. Waste Biomass Valorization 2023, https://doi.org/10.1007/s12649-023-02319-w.

Zhu T, Mao J, Cheng Y, Liu H, Lv L, Ge M, Li S, Huang J, Chen Z, Li H, et al. Recent progress of polysaccharide-based hydrogel interfaces for wound healing and tissue engineering. Adv Mater Interfaces. 2019;6:1900761. https://doi.org/10.1002/admi.201900761.

Article  CAS  Google Scholar 

Schlottmann F, Obed D, Bingöl AS, März V, Vogt PM, Krezdorn N. Treatment of complex wounds with NovoSorb®; biodegradable temporising matrix (BTM)—a retrospective analysis of clinical outcomes. J Personal Med 2022;12, https://doi.org/10.3390/jpm12122002.

Cheshire PA, Herson MR, Cleland H, Akbarzadeh S. Artificial dermal templates: a comparative study of NovoSorb™ Biodegradable Temporising Matrix (BTM) and Integra® Dermal Regeneration Template (DRT). Burns. 2016;42:1088–96. https://doi.org/10.1016/j.burns.2016.01.028.

Article  PubMed  Google Scholar 

Tsegay F, Elsherif M, Butt H. Smart 3D printed hydrogel skin wound bandages: a review. Polymers 2022;14, https://doi.org/10.3390/polym14051012.

Raziyeva K, Kim Y, Zharkinbekov Z, Kassymbek K, Jimi S, Saparov A. Immunology of acute and chronic wound healing. Biomolecules 2021;11, https://doi.org/10.3390/biom11050700.

Tsegay F, Elsherif M, Butt H. Smart 3D printed hydrogel skin wound bandages: a review. Polymers (Basel) 2022;14, https://doi.org/10.3390/polym14051012.

Elangwe CN, Morozkina SN, Olekhnovich RO, Krasichkov A, Polyakova VO, Uspenskaya MV. A review on chitosan and cellulose hydrogels for wound dressings. Polymers (Basel) 2022;14, https://doi.org/10.3390/polym14235163.

Kahle B, Hermanns HJ, Gallenkemper G. Evidence-based treatment of chronic leg ulcers. Dtsch Arztebl Int. 2011;108:231–7. https://doi.org/10.3238/arztebl.2011.0231.

Article  PubMed  PubMed Central  Google Scholar 

Irfan-Maqsood, M. Classification of wounds: know before research and clinical practice. Cell Ther Regen Med J 2016;1:79, https://doi.org/10.15562/ctrm.21.

Moreo K. Understanding and overcoming the challenges of effective case management for patients with chronic wounds. Case Manager 2005;16:62–63, 67, https://doi.org/10.1016/j.casemgr.2005.01.014.

Mustoe T. Understanding chronic wounds: a unifying hypothesis on their pathogenesis and implications for therapy. Am J Surg. 2004;187:S65–70. https://doi.org/10.1016/S0002-9610(03)00306-4.

Article  CAS  Google Scholar 

Guo B, Dong R, Liang Y, Li M. Haemostatic materials for wound healing applications. Nat Rev Chem. 2021;5:773–91. https://doi.org/10.1038/s41570-021-00323-z.

Article  CAS  PubMed  Google Scholar 

Mohite P, Rahayu P, Munde S, Ade N, Chidrawar VR, Singh S, Jayeoye TJ, Prajapati BG, Bhattacharya S, Patel RJ. Chitosan-based hydrogel in the management of dermal infections: a review. Gels. 2023;9:594.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Al-Shudiefat AA-RS, Am Alzyoud J, Al Najjar SA, Talat S, Bustanji Y, Abu-Irmaileh B. The effects of some natural products compared to synthetic products on the metabolic activity, proliferation, viability, migration, and wound healing in sheep tenocytes. Saudi J Biol Sci 2022;29:103391, https://doi.org/10.1016/j.sjbs.2022.103391.

Gushiken LFS, Beserra FP, Bastos JK, Jackson CJ, Pellizzon CH. Cutaneous wound healing: an update from physiopathology to current therapies. Life. 2021;11:665.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Singh S, Nwabor OF, Sukri DM, Wunnoo S, Dumjun K, Lethongkam S, Kusolphat P, Hemtanon N, Klinprathum K, Sunghan J, et al. Poly (vinyl alcohol) copolymerized with xanthan gum/hypromellose/sodium carboxymethyl cellulose dermal dressings functionalized with biogenic nanostructured materials for antibacterial and wound healing application. Int J Biol Macromol. 2022;216:235–50. https://doi.org/10.1016/j.ijbiomac.2022.06.172.

Article  CAS  PubMed  Google Scholar 

Pan Z, Ye H, Wu D. Recent advances on polymeric hydrogels as wound dressings. APL Bioeng. 2021;5:011504. https://doi.org/10.1063/5.0038364.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Choi J, Hong G, Kwon T, Lim JO. Fabrication of oxygen releasing scaffold by embedding H2O2-PLGA microspheres into alginate-based hydrogel sponge and its application for wound healing. Appl Sci 2018;8, https://doi.org/10.3390/app8091492.

Xue J, Wu T, Dai Y, Xia Y. Electrospinning and electrospun nanofibers: methods, materials, and applications. Chem Rev. 2019;119:5298–415. https://doi.org/10.1021/acs.chemrev.8b00593.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ilomuanya MO, Okafor PS, Amajuoyi JN, Onyejekwe JC, Okubanjo OO, Adeosun SO, Silva BO. Polylactic acid-based electrospun fiber and hyaluronic acid-valsartan hydrogel scaffold for chronic wound healing. Beni-Suef Univ J Basic Appl Sci. 2020;9:31. https://doi.org/10.1186/s43088-020-00057-9.

Article  Google Scholar 

Chronakis IS. Novel nanocomposites and nanoceramics based on polymer nanofibers using electrospinning process—a review. J Mater Process Technol. 2005;167:283–93. https://doi.org/10.1016/j.jmatprotec.2005.06.053.

Article  CAS  Google Scholar 

Hong J, Yeo M, Yang GH, Kim G. Cell-electrospinning and its application for tissue engineering. Intl J Mol Sci 2019;20, https://doi.org/10.3390/ijms20246208.

Singh S, Chidrawar VR, Hermawan D, Dodiya R, Samee W, Ontong JC, Ushir YV, Prajapati BG, Chittasupho C. Hypromellose highly swellable composite fortified with Psidium guajava leaf phenolic-rich extract for antioxidative, antibacterial, anti-inflammatory, anti-melanogenesis, and hemostasis applications. J Polym Environ 2023. https://doi.org/10.1007/s10924-023-02819-9

Singh S, Chunglok W, Nwabor OF, Chulrik W, Jansakun C, Bhoopong P. Porous biodegradable sodium alginate composite fortified with Hibiscus sabdariffa L. Calyx extract for the multifarious biological applications and extension of climacteric fruit shelf-life. J Polym Environ 2023;31:922–938, https://doi.org/10.1007/s10924-022-02596-x.

Chidrawar VR, Singh S, Jayeoye TJ, Dodiya R, Samee W, Chittasupho C. Porous swellable hypromellose composite fortified with Eucalyptus camaldulensis leaf hydrophobic/hydrophilic phenolic-rich extract to mitigate dermal wound infections. J Polym Environ. 2023;31:3841–56. https://doi.org/10.1007/s10924-023-02860-8.

Article  CAS  Google Scholar 

Teimouri A, Azadi M. Preparation and characterization of novel chitosan/nanodiopside/nanohydroxyapatite composite scaffolds for tissue engineering applications. Int J Polym Mater Polym Biomater. 2016;65:917–27. https://doi.org/10.1080/00914037.2016.1180606.

Article  CAS  Google Scholar 

Capuana E, Lopresti F, Carfì Pavia F, Brucato V, La Carrubba V. Solution-based processing for scaffold fabrication in tissue engineering applications: a brief review. Polymers 2021, 13, https://doi.org/10.3390/polym13132041.

Perez-Puyana V, Jiménez-Rosado M, Romero A, Guerrero A. Polymer-based scaffolds for soft-tissue engineering. Polymers 2020;12, https://doi.org/10.3390/polym12071566.

Li L, Zhou Y, Li P, Xu Q, Li K, Hu H, Bing W, Zhang Z. Peptide hydrogel based sponge patch for wound infection treatment. Front Bioeng Biotechnol 2022;10.

Sornkamnerd S, Okajima MK, Kaneko T. Tough and porous hydrogels prepared by simple lyophilization of LC gels. ACS Omega. 2017;2:5304–14. https://doi.org/10.1021/acsomega.7b00602.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Thavornyutikarn B, Chantarapanich N, Sitthiseripratip K, Thouas GA, Chen Q. Bone tissue engineering scaffolding: computer-aided scaffolding techniques. Prog Biomater. 2014;3:61–102. https://doi.org/10.1007/s40204-014-0026-7.

Article  PubMed  PubMed Central  Google Scholar 

Tabriz AG, Douroumis D. Recent advances in 3D printing for wound healing: a systematic review. J Drug Delivery Sci Technol. 2022;74:103564. https://doi.org/10.1016/j.jddst.2022.103564.

Article  CAS  Google Scholar 

Uchida DT, Bruschi ML. 3D Printing as a technological strategy for the personalized treatment of wound healing. AAPS PharmSciTech. 2023;24:41. https://doi.org/10.1208/s12249-023-02503-0.

Article  PubMed  Google Scholar 

留言 (0)

沒有登入
gif