Bioengineering Renal Epithelial-Like Cells from Mesenchymal Stem Cells by Combinations of Growth Factors and Small Molecules

Imberti B, Tomasoni S, Ciampi O, Pezzotta A, Derosas M, Xinaris C, Rizzo P, Papadimou E, Novelli R, Benigni A, Remuzzi G. Renal progenitors derived from human iPSCs engraft and restore function in a mouse model of acute kidney injury. Sci Rep. 2015;5(1):8826. https://doi.org/10.1038/srep08826.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Rose V, Müller-Deile J. Generation of patient-derived podocytes from skin biopsies. JoVE. 2023;195: e65364. https://doi.org/10.3791/65364.

Article  Google Scholar 

Chou YH, Pan SY, Yang CH, Lin SL. Stem cells and kidney regeneration. J Formos Med Assoc. 2014;113(4):201–9. https://doi.org/10.1016/j.jfma.2013.12.001.

Article  CAS  PubMed  Google Scholar 

Bhattacharyya S, Kumar A, Lal KK. The voyage of stem cell toward terminal differentiation: a brief overview. Acta Biochim Biophys Sin. 2012;44(6):463–75. https://doi.org/10.1093/abbs/gms027.

Article  CAS  PubMed  Google Scholar 

Bejoy J, Farry JM, Peek JL, Cabatu MC, Williams FM, Welch RC, Qian ES, Woodard LE. Podocytes derived from human induced pluripotent stem cells: characterization, comparison, and modeling of diabetic kidney disease. Stem Cell Res & Ther. 2022;13(1):355. https://doi.org/10.1186/s13287-022-03040-6.

Article  CAS  Google Scholar 

Ranghini E, Mora CF, Edgar D, Kenny SE, Murray P, Wilm B. Stem cells derived from neonatal mouse kidney generate functional proximal tubule-like cells and integrate into developing nephrons in vitro. PLoS ONE. 2013;8(5): e62953. https://doi.org/10.1371/journal.pone.0062953.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Liu K, Yu C, Xie M, Li K, Ding S. Chemical modulation of cell fate in stem cell therapeutics and regenerative medicine. Cell Chem Biol. 2016;23(8):893–916. https://doi.org/10.1016/j.chembiol.2016.07.007.

Article  CAS  PubMed  Google Scholar 

Qian T, Hernday SE, Bao X, Olson WR, Panzer SE, Shusta EV, Palecek SP. Directed differentiation of human pluripotent stem cells to podocytes under defined conditions. Sci Rep. 2019;9(1):2765. https://doi.org/10.1038/s41598-019-39504-8.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Tran T, Lindström NO, Ransick A, Brandine GD, Guo Q, Kim AD, Der B, Peti-Peterdi J, Smith AD, Thornton M, Grubbs B. In vivo developmental trajectories of human podocyte inform in vitro differentiation of pluripotent stem cell-derived podocytes. Dev cell. 2019;50(1):102–16. https://doi.org/10.1016/j.devcel.2019.06.001.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kang M, Han YM. Differentiation of human pluripotent stem cells into nephron progenitor cells in a serum and feeder free system. PLoS ONE. 2014;9(4): e94888. https://doi.org/10.1371/journal.pone.0094888.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Begum S, Ahmed N, Mubarak M, Mateen SM, Khalid N, Rizvi SA. Modulation of renal parenchyma in response to allogeneic adipose-derived mesenchymal stem cells transplantation in acute kidney injury. Int J Stem Cells. 2019;12(1):125–38. https://doi.org/10.15283/ijsc18091.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Papadimou E, Morigi M, Iatropoulos P, Xinaris C, Tomasoni S, Benedetti V, Longaretti L, Rota C, Todeschini M, Rizzo P, Introna M. Direct reprogramming of human bone marrow stromal cells into functional renal cells using cell-free extracts. Stem Cell Rep. 2015;4(4):685–98. https://doi.org/10.1016/j.stemcr.2015.02.002.

Article  CAS  Google Scholar 

Castrop H, Schießl IM. Novel routes of albumin passage across the glomerular filtration barrier. Acta Physiol. 2017;219(3):546–55. https://doi.org/10.1111/apha.12760.

Article  CAS  Google Scholar 

Forte G, Minieri M, Cossa P, Antenucci D, Sala M, Gnocchi V, Fiaccavento R, Carotenuto F, De Vito P, Baldini PM, Prat M. Hepatocyte growth factor effects on mesenchymal stem cells: proliferation, migration, and differentiation. Stem cells. 2006;24(1):23–33. https://doi.org/10.1634/stemcells.2004-0176.

Article  CAS  PubMed  Google Scholar 

Bridgewater DJ, Ho J, Sauro V, Matsell DG. Insulin-like growth factors inhibit podocyte apoptosis through the PI3 kinase pathway. Kidney Int. 2005;67(4):1308–14. https://doi.org/10.1111/j.1523-1755.2005.00208.x.

Article  CAS  PubMed  Google Scholar 

Gilbertson DG, Duff ME, West JW, Kelly JD, Sheppard PO, Hofstrand PD, Gao Z, Shoemaker K, Bukowski TR, Moore M, Feldhaus AL. Platelet-derived growth factor C (PDGF-C), a novel growth factor that binds to PDGF α and β receptor. J Biol Chem. 2001;276(29):27406–14. https://doi.org/10.1074/jbc.M101056200.

Article  CAS  PubMed  Google Scholar 

Gellibert F, Woolven J, Fouchet MH, Mathews N, Goodland H, Lovegrove V, Laroze A, Nguyen VL, Sautet S, Wang R, Janson C. Identification of 1, 5-naphthyridine derivatives as a novel series of potent and selective TGF-β type I receptor inhibitors. J Med Chem. 2004;47(18):4494–506. https://doi.org/10.1021/jm0400247.

Article  CAS  PubMed  Google Scholar 

Ebrahimi B. Chemicals as the sole transformers of cell fate. Int J Stem Cells. 2016;9(1):9–20. https://doi.org/10.15283/ijsc.2016.9.1.9.

Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

Musah S, Mammoto A, Ferrante TC, Jeanty SS, Hirano-Kobayashi M, Mammoto T, Roberts K, Chung S, Novak R, Ingram M, Fatanat-Didar T. Mature induced-pluripotent-stem-cell-derived human podocytes reconstitute kidney glomerular-capillary-wall function on a chip. Nat Biomed Eng. 2017;1(5):0069. https://doi.org/10.1038/s41551-017-0069.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rauch C, Feifel E, Kern G, Murphy C, Meier F, Parson W, Beilmann M, Jennings P, Gstraunthaler G, Wilmes A. Differentiation of human iPSCs into functional podocytes. PLoS ONE. 2018;13(9): e0203869. https://doi.org/10.1371/journal.pone.0203869.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yamanaka S, Yokoo T. Current bioengineering methods for whole kidney regeneration. Stem Cells Int. 2015; 2015. https://doi.org/10.1155/2015/724047.

Reiser J, Altintas MM. Podocytes. F1000Research. 2016;5. https://doi.org/10.12688/f1000research.7255.1

Davidson G, Dono R, Zeller R. FGF signalling is required for differentiation-induced cytoskeletal reorganisation and formation of actin-based processes by podocytes. J Cell Sci. 2001;114(18):3359–66. https://doi.org/10.1242/jcs.114.18.3359.

Article  CAS  PubMed  Google Scholar 

Kazama I, Mahoney Z, Miner JH, Graf D, Economides AN, Kreidberg JA. Podocyte-derived BMP7 is critical for nephron development. J Am Soc Nephrol. 2008;19(11):2181–91. https://doi.org/10.1681/ASN.2007111212.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dudley AT, Godin RE, Robertson EJ. Interaction between FGF and BMP signaling pathways regulates development of metanephric mesenchyme. Genes Dev. 1999;13(12):1601–13. https://doi.org/10.1101/gad.13.12.1601

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kreidberg JA. WT1 and kidney progenitor cells. Organogenesis. 2010;6(2):61–70. https://doi.org/10.4161/org.6.2.11928.

Article  PubMed  PubMed Central  Google Scholar 

Ijpelaar DH, Schulz A, Koop K, Schlesener M, Bruijn JA, Kerjaschki D, Kreutz R, de Heer E. Glomerular hypertrophy precedes albuminuria and segmental loss of podoplanin in podocytes in Munich-Wistar-Fromter rats. Am J Physiol Renal Physiol. 2008;294(4):F758-67. https://doi.org/10.1152/ajprenal.00457.2007.

Article  CAS  PubMed  Google Scholar 

Koop K, Eikmans M, Wehland M, Baelde H, Ijpelaar D, Kreutz R, Kawachi H, Kerjaschki D, de Heer E, Bruijn JA. Selective loss of podoplanin protein expression accompanies proteinuria and precedes alterations in podocyte morphology in a spontaneous proteinuric rat model. Am J Pathol. 2008;173(2):315–26. https://doi.org/10.2353/ajpath.2008.080063.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ding WY, Saleem MA. Current concepts of the podocyte in nephrotic syndrome. Kidney Res Clin Pract. 2012;31(2):87–93. https://doi.org/10.1016/j.krcp.2012.04.323.

Article  PubMed  PubMed Central  Google Scholar 

Liebau MC, Lang D, Bohm J, Endlich N, Bek MJ, Witherden I, Mathieson PW, Saleem MA, Pavenstadt H, Fischer KG. Functional expression of the renin-angiotensin system in human podocytes. Am J Physiol Renal Physiol. 2006;290(3):F710–9. https://doi.org/10.1152/ajprenal.00475.2004.

Article  CAS  PubMed  Google Scholar 

Burns KD, Hiremath S. Urinary angiotensinogen as a biomarker of chronic kidney disease: ready for prime time? Nephrol Dial Transplant. 2012;27(8):3010–3. https://doi.org/10.1093/ndt/gfs166.

Article  CAS  PubMed  Google Scholar 

Sirin Y, Susztak K. Notch in the kidney: development and disease. J Pathol. 2012;226(2):394–403. https://doi.org/10.1002/path.2967.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif