Semi-mechanistic modeling of resistance development to β-lactam and β-lactamase-inhibitor combinations

Oliphant CM, Eroschenko K (2015) Antibiotic resistance, Part 2: gram-negative pathogens. JNP-J Nurse Pract 11:79–86

Article  Google Scholar 

Dhillon RH, Clark J (2012) ESBLs: a clear and present danger? Crit Care Res Pract 2012:625170

PubMed  Google Scholar 

Drawz SM, Bonomo RA (2010) Three decades of beta-lactamase inhibitors. Clin Microbiol Rev 23(1):160–201. https://doi.org/10.1128/CMR.00037-09

Article  CAS  PubMed  PubMed Central  Google Scholar 

Abodakpi H, Chang KT, Gao S, Sánchez-Díaz AM, Cantón R, Tam VH (2019) Optimal piperacillin-tazobactam dosing strategies against extended-Spectrum-β-Lactamase-producing Enterobacteriaceae. Antimicrob Agents Chemother 63(2):e01906–e01918. https://doi.org/10.1128/AAC.01906-18

Article  CAS  PubMed  PubMed Central  Google Scholar 

Abdelraouf K, Chavda KD, Satlin MJ, Jenkins SG, Kreiswirth BN, Nicolau DP (2020) Piperacillin-tazobactam-resistant/third-generation cephalosporin-susceptible Escherichia coli and Klebsiella pneumoniae isolates: resistance mechanisms and in vitro-in vivo discordance. Int J Antimicrob Agents 55(3):105885

Article  CAS  PubMed  Google Scholar 

Zhou K, Tao Y, Han L, Ni Y, Sun J (2019) Piperacillin-Tazobactam (TZP) resistance in Escherichia coli due to hyperproduction of TEM-1 β-Lactamase mediated by the promoter Pa/Pb. Front Microbiol 10:833. https://doi.org/10.3389/fmicb.2019.00833

Article  PubMed  PubMed Central  Google Scholar 

Nicolas-Chanoine MH, Mayer N, Guyot K, Dumont E, Pagès JM (2018) Interplay between membrane permeability and enzymatic barrier leads to antibiotic-dependent resistance in Klebsiella Pneumoniae. Front Microbiol 9:1422. https://doi.org/10.3389/fmicb.2018.01422

Article  PubMed  PubMed Central  Google Scholar 

Fernández L, Hancock RE (2012) Adaptive and mutational resistance: role of porins and efflux pumps in drug resistance. Clin Microbiol Rev 25(4):661–681. https://doi.org/10.1128/CMR.00043-12

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pages JM, Lavigne JP, Leflon-Guibout V, Marcon E, Bert F, Noussair L, Nicolas-Chanoine MH (2009) Efflux pump, the masked side of beta-lactam resistance in Klebsiella pneumoniae clinical isolates. PLoS ONE 4(3):e4817. https://doi.org/10.1371/journal.pone.0004817

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kakoullis L, Papachristodoulou E, Chra P, Panos G (2021) Mechanisms of antibiotic resistance in important gram-positive and gram-negative pathogens and novel antibiotic solutions. Antibiot (Basel Switzerland) 10(4):415. https://doi.org/10.3390/antibiotics10040415

Article  CAS  Google Scholar 

Heinz E, Ejaz H, Bartholdson Scott J, Wang N, Gujaran S, Pickard D, Wilksch J, Cao H, Haq IU, Dougan G, Strugnell RA (2019) Resistance mechanisms and population structure of highly drug resistant Klebsiella in Pakistan during the introduction of the carbapenemase NDM-1. Sci Rep 9(1):2392. https://doi.org/10.1038/s41598-019-38943-7

Article  PubMed  PubMed Central  Google Scholar 

Masi M, Réfregiers M, Pos KM, Pagès JM (2017) Mechanisms of envelope permeability and antibiotic influx and efflux in gram-negative bacteria. Nat Microbiol 2:17001. https://doi.org/10.1038/nmicrobiol.2017.1

Article  CAS  PubMed  Google Scholar 

Prochnow H, Fetz V, Hotop SK, García-Rivera MA, Heumann A, Brönstrup M (2019) Subcellular quantification of uptake in gram-negative bacteria. Anal Chem 91(3):1863–1872. https://doi.org/10.1021/acs.analchem.8b03586

Article  CAS  PubMed  Google Scholar 

Mi K, Zhou K, Sun L, Hou Y, Ma W, Xu X, Huo M, Liu Z, Huang L (2022) Application of semi-mechanistic pharmacokinetic and pharmacodynamic model in antimicrobial resistance. Pharmaceutics 14(2):246. https://doi.org/10.3390/pharmaceutics14020246

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sahoo S, Mishra A, Kaur H, Hari K, Muralidharan S, Mandal S, Jolly MK (2021) A mechanistic model captures the emergence and implications of non-genetic heterogeneity and reversible drug resistance in ER + Breast cancer cells. NAR cancer 3(3):zcab027. https://doi.org/10.1093/narcan/zcab027

Article  PubMed  PubMed Central  Google Scholar 

Liakopoulos A, Betts J, La Ragione R, van Essen-Zandbergen A, Ceccarelli D, Petinaki E, Koutinas CK, Mevius DJ (2018) Occurrence and characterization of extended-spectrum cephalosporin-resistant enterobacteriaceae in healthy household dogs in Greece. J. Med. Microbiol 67(7):931–935

Article  CAS  PubMed  Google Scholar 

Kojima S, Nikaido H (2013) Permeation rates of penicillins indicate that Escherichia coli porins function principally as nonspecific channels. PNAS 110(28):E2629–E2634

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lim SP, Nikaido H (2010) Kinetic parameters of efflux of penicillins by the multidrug efflux transporter AcrAB-TolC of Escherichia coli. Antimicrob Agents Chemother 54(5):1800–1806. https://doi.org/10.1128/AAC.01714-09

Article  CAS  PubMed  PubMed Central  Google Scholar 

Faheem M, Rehman MT, Danishuddin M, Khan AU (2013) Biochemical characterization of CTX-M-15 from Enterobacter cloacae and designing a novel non-β-lactam-β-lactamase inhibitor. PLoS ONE 8(2):e56926. https://doi.org/10.1371/journal.pone.0056926

Article  CAS  PubMed  PubMed Central  Google Scholar 

Helfand MS, Bethel CR, Hujer AM, Hujer KM, Anderson VE, Bonomo RA (2003) Understanding resistance to beta-lactams and beta-lactamase inhibitors in the SHV beta-lactamase: lessons from the mutagenesis of SER-130. J Biol Chem 278(52):52724–52729. https://doi.org/10.1074/jbc.M306059200

Article  CAS  PubMed  Google Scholar 

Maurizi MR (1992) Proteases and protein degradation in Escherichia coli. Experientia 48(2):178–201. https://doi.org/10.1007/BF01923511

Article  CAS  PubMed  Google Scholar 

Perilli M, Franceschini N, Bonfiglio G, Segatore B, Stefani S, Nicoletti G, Perez MM, Bianchi C, Zollo A, Amicosante G (2000) A kinetic study on the interaction between tazobactam (a penicillanic acid sulphone derivative) and active-site serine beta-lactamases. J Enzyme Inhib 15(1):1–10. https://doi.org/10.1080/14756369909030337

Article  CAS  PubMed  Google Scholar 

Nielsen EI, Friberg LE (2013) Pharmacokinetic-pharmacodynamic modeling of antibacterial drugs. Pharmacol Rev 65(3):1053–1090. https://doi.org/10.1124/pr.111.005769

Article  CAS  PubMed  Google Scholar 

Viane E, Chanteux H, Servais H, Mingeot-Leclercq M-P, Tulkens PM (2002) Comparative Stability Studies of antipseudomonal-lactams for potential administration through portable elastomeric pumps (home therapy for cystic fibrosis patients) and motor-operated syringes (intensive care units). Antimicrob Agents Chemoter 46(8):2327–2332. https://doi.org/10.1128/AAC.46.8.2327-2332.2002

Article  CAS  Google Scholar 

Samara E, Moriarty TF, Decosterd LA, Richards RG, Gautier E, Wahl P (2017) Antibiotic stability over six weeks in aqueous solution at body temperature with and without heat treatment that mimics the curing of bone cement. Bone Jt Res 6(5):296–306. https://doi.org/10.1302/2046-3758.65.BJR-2017-0276.R1

Article  CAS  Google Scholar 

Kaczmarek FM, Dib-Hajj F, Shang W, Gootz TD (2006) High-level carbapenem resistance in a Klebsiella pneumoniae clinical isolate is due to the combination of bla(ACT-1) beta-lactamase production, porin OmpK35/36 insertional inactivation, and down-regulation of the phosphate transport porin phoe. Antimicrob Agents Chemother 50(10):3396–3406. https://doi.org/10.1128/AAC.00285-06

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee YJ, Huang CH, Ilsan NA, Lee IH, Huang TW (2021) Molecular epidemiology and characterization of carbapenem-resistant Klebsiella pneumoniae isolated from urine at a teaching hospital in Taiwan. Microorganisms 9(2):271. https://doi.org/10.3390/microorganisms9020271

Article  CAS  PubMed  PubMed Central  Google Scholar 

Singh T, Singh PK, Das S, Wani S, Jawed A, Dar SA (2019) Transcriptome analysis of beta-lactamase genes in diarrheagenic Escherichia coli. Sci Rep 9(1):3626. https://doi.org/10.1038/s41598-019-40279-1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jones AK, Ranjitkar S, Lopez S, Li C, Blais J, Reck F, Dean CR (2018) Impact of Inducible blaDHA-1 on susceptibility of Klebsiella pneumoniae clinical isolates to LYS228 and identification of chromosomal mpl and ampD mutations mediating Upregulation of plasmid-borne blaDHA-1 expression. Antimicrob Agents Chemother 62(10):e01202–e01218. https://doi.org/10.1128/AAC.01202-18

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang X, Minasov G, Shoichet BK (2002) Evolution of an antibiotic resistance enzyme constrained by stability and activity trade-offs. J Mol Biol 320(1):85–95. https://doi.org/10.1016/S0022-2836(02)00400-X

Article  CAS  PubMed  Google Scholar 

Ramdani-Bouguessa N, Manageiro V, Jones-Dias D, Ferreira E, Tazir M, Caniça M (2011) Role of SHV β-lactamase variants in resistance of clinical Klebsiella pneumoniae strains to β-lactams in an Algerian hospital. J Med Microbiol 60(Pt 7):983–987. https://doi.org/10.1099/jmm.0.030577-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif