Five multivariate Duchenne muscular dystrophy progression models bridging six-minute walk distance and MRI relaxometry of leg muscles

Gao QQ, McNally EM (2015) The dystrophin complex: structure, function, and implications for therapy. Compr Physiol 5(3):1223–1239. https://doi.org/10.1002/cphy.c140048

Article  PubMed  PubMed Central  Google Scholar 

Hoffman EP, Brown RH Jr, Kunkel LM (1987) Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 51(6):919–928. https://doi.org/10.1016/0092-8674(87)90579-4

Article  CAS  PubMed  Google Scholar 

Salari N, Fatahi B, Valipour E et al (2022) Global prevalence of Duchenne and Becker muscular dystrophy: a systematic review and meta-analysis. J Orthop Surg Res 17(1):96. https://doi.org/10.1186/s13018-022-02996-8

Article  PubMed  PubMed Central  Google Scholar 

Thomas S, Conway KM, Fapo O et al (2022) Time to diagnosis of Duchenne muscular dystrophy remains unchanged: findings from the muscular dystrophy surveillance, tracking, and research network, 2000–2015. Muscle Nerve 66(2):193–197. https://doi.org/10.1002/mus.27532

Article  PubMed  PubMed Central  Google Scholar 

Birnkrant DJ, Bushby K, Bann CM et al (2018) Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and neuromuscular, rehabilitation, endocrine, and gastrointestinal and nutritional management. Lancet Neurol 17(3):251–267. https://doi.org/10.1016/S1474-4422(18)30024-3

Article  PubMed  PubMed Central  Google Scholar 

van Ruiten HJ, Straub V, Bushby K, Guglieri M (2014) Improving recognition of Duchenne muscular dystrophy: a retrospective case note review. Arch Dis Child 99(12):1074–1077. https://doi.org/10.1136/archdischild-2014-306366

Article  PubMed  Google Scholar 

Mendell JR, Lloyd-Puryear M (2013) Report of MDA muscle disease symposium on newborn screening for Duchenne muscular dystrophy. Muscle Nerve 48(1):21–26. https://doi.org/10.1002/mus.23810

Article  PubMed  Google Scholar 

Deng J, Zhang J, Shi K, Liu Z (2022) Drug development progress in Duchenne muscular dystrophy. Front Pharmacol 13:950651. https://doi.org/10.3389/fphar.2022.950651

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sheikh O, Yokota T (2021) Developing DMD therapeutics: a review of the effectiveness of small molecules, stop-codon readthrough, dystrophin gene replacement, and exon-skipping therapies. Expert Opin Investig Drugs 30(2):167–176. https://doi.org/10.1080/13543784.2021.1868434

Article  CAS  PubMed  Google Scholar 

FDA grants accelerated approval to first drug for Duchenne muscular dystrophy. https://www.fda.gov/news-events/press-announcements/fda-grants-accelerated-approval-first-drug-duchenne-muscular-dystrophy (FDA NEWS RELEASE, Content current as of: 29 Sept 2016)

Shirley M (2021) Casimersen: first approval. Drugs 81(7):875–879. https://doi.org/10.1007/s40265-021-01512-2

Article  CAS  PubMed  Google Scholar 

Heo YA (2020) Golodirsen: first approval. Drugs 80(3):329–333. https://doi.org/10.1007/s40265-020-01267-2

Article  PubMed  Google Scholar 

Dhillon S (2020) Viltolarsen: first approval. Drugs 80(10):1027–1031. https://doi.org/10.1007/s40265-020-01339-3

Article  CAS  PubMed  Google Scholar 

Syed YY (2016) Eteplirsen: first global approval. Drugs 76(17):1699–1704. https://doi.org/10.1007/s40265-016-0657-1

Article  CAS  PubMed  Google Scholar 

Lin G AF, Otuonya I. Deflazacort, Eteplirsen, and Golodirsen for Duchenne Muscular Dystrophy: Effectiveness and Value-Evidence Report. 2019. Accessed 25 Apr 2023. https://icer.org/wp-content/uploads/2020/10/ICER_DMD-Final-Report_081519-2-1.pdf

Angelini C, Peterle E (2012) Old and new therapeutic developments in steroid treatment in Duchenne muscular dystrophy. Acta Myol 31(1):9–15

PubMed  PubMed Central  Google Scholar 

Flanigan KM, Dunn DM, von Niederhausern A et al (2009) Mutational spectrum of DMD mutations in dystrophinopathy patients: application of modern diagnostic techniques to a large cohort. Hum Mutat 30(12):1657–1666. https://doi.org/10.1002/humu.21114

Article  CAS  PubMed  PubMed Central  Google Scholar 

McDonald CM, Henricson EK, Abresch RT et al (2013) The 6-minute walk test and other clinical endpoints in duchenne muscular dystrophy: reliability, concurrent validity, and minimal clinically important differences from a multicenter study. Muscle Nerve 48(3):357–368. https://doi.org/10.1002/mus.23905

Article  PubMed  PubMed Central  Google Scholar 

Ricotti V, Ridout DA, Pane M et al (2016) The NorthStar ambulatory assessment in Duchenne muscular dystrophy: considerations for the design of clinical trials. J Neurol Neurosurg Psychiatry 87(2):149–155. https://doi.org/10.1136/jnnp-2014-309405

Article  PubMed  Google Scholar 

Gloor M, Fasler S, Fischmann A et al (2011) Quantification of fat infiltration in oculopharyngeal muscular dystrophy: comparison of three MR imaging methods. J Magn Reson Imaging 33(1):203–210. https://doi.org/10.1002/jmri.22431

Article  PubMed  Google Scholar 

Kim HK, Laor T, Horn PS, Racadio JM, Wong B, Dardzinski BJ (2010) T2 mapping in Duchenne muscular dystrophy: distribution of disease activity and correlation with clinical assessments. Radiology 255(3):899–908. https://doi.org/10.1148/radiol.10091547

Article  PubMed  Google Scholar 

Gaeta M, Messina S, Mileto A et al (2012) Muscle fat-fraction and mapping in Duchenne muscular dystrophy: evaluation of disease distribution and correlation with clinical assessments. Preliminary experience. Skeletal Radiol 41(8):955–961. https://doi.org/10.1007/s00256-011-1301-5

Article  PubMed  Google Scholar 

Torriani M, Townsend E, Thomas BJ, Bredella MA, Ghomi RH, Tseng BS (2012) Lower leg muscle involvement in Duchenne muscular dystrophy: an MR imaging and spectroscopy study. Skeletal Radiol 41(4):437–445. https://doi.org/10.1007/s00256-011-1240-1

Article  PubMed  Google Scholar 

Arpan I, Forbes SC, Lott DJ et al (2013) T(2) mapping provides multiple approaches for the characterization of muscle involvement in neuromuscular diseases: a cross-sectional study of lower leg muscles in 5–15-year-old boys with Duchenne muscular dystrophy. NMR Biomed 26(3):320–328. https://doi.org/10.1002/nbm.2851

Article  CAS  PubMed  Google Scholar 

Willcocks RJ, Arpan IA, Forbes SC et al (2014) Longitudinal measurements of MRI-T2 in boys with Duchenne muscular dystrophy: effects of age and disease progression. Neuromuscul Disord 24(5):393–401. https://doi.org/10.1016/j.nmd.2013.12.012

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barnard AM, Willcocks RJ, Finanger EL et al (2018) Skeletal muscle magnetic resonance biomarkers correlate with function and sentinel events in Duchenne muscular dystrophy. PLoS ONE 13(3):e0194283. https://doi.org/10.1371/journal.pone.0194283

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barnard AM, Willcocks RJ, Triplett WT et al (2020) MR biomarkers predict clinical function in Duchenne muscular dystrophy. Neurology 94(9):e897–e909. https://doi.org/10.1212/WNL.0000000000009012

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim S, Willcocks RJ, Daniels MJ et al (2023) Multivariate modeling of magnetic resonance biomarkers and clinical outcome measures for Duchenne muscular dystrophy clinical trials. CPT Pharmacomet Syst Pharmacol 12(10):1437–1449. https://doi.org/10.1002/psp4.13021

Article  CAS  Google Scholar 

Morales JF, Muse R, Podichetty JT et al (2023) Disease progression joint model predicts time to type 1 diabetes onset: optimizing future type 1 diabetes prevention studies. CPT Pharmacomet Syst Pharmacol 12(7):1016–1028. https://doi.org/10.1002/psp4.12973

Article  CAS  Google Scholar 

Lingineni K, Aggarwal V, Morales JF et al (2022) Development of a model-based clinical trial simulation platform to optimize the design of clinical trials for Duchenne muscular dystrophy. CPT Pharmacomet Syst Pharmacol 11(3):318–332. https://doi.org/10.1002/psp4.12753

Article  CAS  Google Scholar 

Ahn JE, Karlsson MO, Dunne A, Ludden TM (2008) Likelihood based approaches to handling data below the quantification limit using NONMEM VI. J Pharmacokinet Pharmacodyn 35(4):401–421. https://doi.org/10.1007/s10928-008-9094-4

Article  PubMed  Google Scholar 

Bergstrand M, Karlsson MO (2009) Handling data below the limit of quantification in mixed effect models. AAPS J 11(2):371–380. https://doi.org/10.1208/s12248-009-9112-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mazzone E, Vasco G, Sormani MP et al (2011) Functional changes in Duchenne muscular dystrophy: a 12-month longitudinal cohort study. Neurology 77(3):250–256. https://doi.org/10.1212/WNL.0b013e318225ab2e

Article  CAS  PubMed  Google Scholar 

Barnard AM, Hammers DW, Triplett WT et al (2022) Evaluating genetic modifiers of Duchenne Muscular dystrophy disease progression using modeling and MRI. Neurology 99(21):e2406–e2416. https://doi.org/10.1212/wnl.0000000000201163

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rooney WD, Berlow YA, Triplett WT et al (2020) Modeling disease trajectory in Duchenne muscular dystrophy. Neurology 94(15):e1622–e1633. https://doi.org/10.1212/wnl.0000000000009244

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif