Translational two-pore PBPK model to characterize whole-body disposition of different-size endogenous and exogenous proteins

Jin S et al (2022) Emerging new therapeutic antibody derivatives for cancer treatment. Signal Transduct Target Ther 7(1):39

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zaman R et al (2019) Current strategies in extending half-lives of therapeutic proteins. J Control Release 301:176–189

Article  CAS  PubMed  Google Scholar 

AlQahtani AD et al (2019) Strategies for the production of long-acting therapeutics and efficient drug delivery for cancer treatment. Biomed Pharmacother 113:108750

Article  CAS  PubMed  Google Scholar 

Boswell CA et al (2010) Effects of charge on antibody tissue distribution and pharmacokinetics. Bioconjug Chem 21(12):2153–2163

Article  CAS  PubMed  Google Scholar 

Li Z, Krippendorff BF, Shah DK (2017) Influence of Molecular size on the clearance of antibody fragments. Pharm Res 34(10):2131–2141

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu L (2015) Antibody glycosylation and its impact on the pharmacokinetics and pharmacodynamics of monoclonal antibodies and Fc-fusion proteins. J Pharm Sci 104(6):1866–1884

Article  CAS  PubMed  Google Scholar 

Rafidi H et al (2021) Imaging reveals importance of shape and flexibility for glomerular filtration of biologics. Mol Cancer Ther 20(10):2008–2015

Article  CAS  PubMed  Google Scholar 

Haraldsson B, Nystrom J, Deen WM (2008) Properties of the glomerular barrier and mechanisms of proteinuria. Physiol Rev 88(2):451–487

Article  CAS  PubMed  Google Scholar 

Li Z et al (2016) Influence of molecular size on tissue distribution of antibody fragments. MAbs 8(1):113–119

Article  CAS  PubMed  Google Scholar 

Rippe B, Haraldsson B (1987) Fluid and protein fluxes across small and large pores in the microvasculature. Application of two-pore equations. Acta Physiol Scand 131(3):411–28

Article  CAS  PubMed  Google Scholar 

Rippe B, Haraldsson B (1994) Transport of macromolecules across microvascular walls: the two-pore theory. Physiol Rev 74(1):163–219

Article  CAS  PubMed  Google Scholar 

Baxter LT et al (1995) Biodistribution of monoclonal antibodies: scale-up from mouse to human using a physiologically based pharmacokinetic model. Cancer Res 55(20):4611–4622

CAS  PubMed  Google Scholar 

Ferl GZ, Wu AM, DiStefano JJ 3rd (2005) A predictive model of therapeutic monoclonal antibody dynamics and regulation by the neonatal Fc receptor (FcRn). Ann Biomed Eng 33(11):1640–1652

Article  PubMed  Google Scholar 

Davda JP et al (2008) A physiologically based pharmacokinetic (PBPK) model to characterize and predict the disposition of monoclonal antibody CC49 and its single chain Fv constructs. Int Immunopharmacol 8(3):401–413

Article  CAS  PubMed  Google Scholar 

Niederalt C et al (2018) A generic whole body physiologically based pharmacokinetic model for therapeutic proteins in PK-Sim. J Pharmacokinet Pharmacodyn 45(2):235–257

Article  CAS  PubMed  Google Scholar 

Sepp A et al (2015) Development of a physiologically based pharmacokinetic model for a domain antibody in mice using the two-pore theory. J Pharmacokinet Pharmacodyn 42(2):97–109

Article  CAS  PubMed  Google Scholar 

Sepp A et al (2019) Computer-assembled cross-species/cross-modalities two-pore physiologically based pharmacokinetic model for biologics in mice and rats. J Pharmacokinet Pharmacodyn 46(4):339–359

Article  CAS  PubMed  Google Scholar 

Sepp A, Bergstrom M, Davies M (2020) Cross-species/cross-modality physiologically based pharmacokinetics for biologics: 89Zr-labelled albumin-binding domain antibody GSK3128349 in humans. MAbs 12(1):1832861

Article  PubMed  PubMed Central  Google Scholar 

Li Z, Shah DK (2019) Two-pore physiologically based pharmacokinetic model with de novo derived parameters for predicting plasma PK of different size protein therapeutics. J Pharmacokinet Pharmacodyn 46(3):305–318

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li Z et al (2021) Two-pore physiologically based pharmacokinetic model validation using whole-body biodistribution of trastuzumab and different-size fragments in mice. J Pharmacokinet Pharmacodyn 48(5):743–762

Article  CAS  PubMed  Google Scholar 

Li Z et al (2021) A two-pore physiologically based pharmacokinetic model to predict subcutaneously administered different-size antibody/antibody fragments. AAPS J 23(3):62

Article  CAS  PubMed  Google Scholar 

Kratz F (2008) Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. J Control Release 132(3):171–183

Article  CAS  PubMed  Google Scholar 

Sleep D (2015) Albumin and its application in drug delivery. Expert Opin Drug Deliv 12(5):793–812

Article  CAS  PubMed  Google Scholar 

Baxter LT et al (1994) Physiologically based pharmacokinetic model for specific and nonspecific monoclonal antibodies and fragments in normal tissues and human tumor xenografts in nude mice. Cancer Res 54(6):1517–1528

CAS  PubMed  Google Scholar 

Shah DK, Betts AM (2012) Towards a platform PBPK model to characterize the plasma and tissue disposition of monoclonal antibodies in preclinical species and human. J Pharmacokinet Pharmacodyn 39(1):67–86

Article  CAS  PubMed  Google Scholar 

Abuqayyas L, Harrold J (2015) A general method for initialization of steady-states in complex PK/PD systems. In journal of pharmacokinetics and pharmacodynamics, vol 42. Springer/plenum publishers, 233 Spring St, New York, NY 10013 USA, p S40

Google Scholar 

Hu S, D’Argenio DZ (2020) Predicting monoclonal antibody pharmacokinetics following subcutaneous administration via whole-body physiologically-based modeling. J Pharmacokinet Pharmacodyn 47(5):385–409

Article  PubMed  PubMed Central  Google Scholar 

Chaudhury C et al (2006) Albumin binding to FcRn: distinct from the FcRn-IgG interaction. Biochemistry 45(15):4983–4990

Article  CAS  PubMed  Google Scholar 

Abdiche YN et al (2015) The neonatal Fc receptor (FcRn) binds independently to both sites of the IgG homodimer with identical affinity. MAbs 7(2):331–343

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lund U et al (2003) Glomerular filtration rate dependence of sieving of albumin and some neutral proteins in rat kidneys. Am J Physiol Renal Physiol 284(6):F1226–F1234

Article  CAS  PubMed  Google Scholar 

Gburek J, Konopska B, Golab K (2021) Renal handling of albumin-from early findings to current concepts. Int J Mol Sci 22(11):5809

Article  CAS  PubMed  PubMed Central  Google Scholar 

Patlak CS, Goldstein DA, Hoffman JF (1963) The flow of solute and solvent across a two-membrane system. J Theor Biol 5(3):426–442

Article  CAS  PubMed  Google Scholar 

Gekle M (2005) Renal tubule albumin transport. Annu Rev Physiol 67:573–594

Article  CAS  PubMed  Google Scholar 

Tojo A, Kinugasa S (2012) Mechanisms of glomerular albumin filtration and tubular reabsorption. Int J Nephrol 2012:481520

Article  PubMed  PubMed Central  Google Scholar 

Fan YY et al (2019) Human FcRn tissue expression profile and half-life in PBMCs. Biomolecules 9(8):373

Article  CAS  PubMed  PubMed Central  Google Scholar 

D’Hooghe L et al (2017) Cell surface dynamics and cellular distribution of endogenous FcRn. PLoS One 12(8):e0182695

Article  PubMed  PubMed Central  Google Scholar 

Liu S et al (2021) Effect of variable domain charge on in vitro and in vivo disposition of monoclonal antibodies. MAbs 13(1):1993769

Article  PubMed  PubMed Central  Google Scholar 

Zaias J et al (2009) Reference values for serum proteins of common laboratory rodent strains. J Am Assoc Lab Anim Sci 48(4):387–390

CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif