Intrauterine growth restriction alters kidney metabolism at the end of nephrogenesis

Sharma D, Shastri S, Farahbakhsh N, Sharma P. Intrauterine growth restriction—part 1. J Matern Fetal Neonatal Med. 2016;29:3977–87.

Article  PubMed  Google Scholar 

Eriksson JG, Salonen MK, Kajantie E, Osmond C. Prenatal growth and CKD in older adults: longitudinal findings from the Helsinki Birth Cohort Study, 1924–1944. Am J Kidney Dis. 2018;71:20–6.

Article  PubMed  Google Scholar 

Vikse BE, Irgens LM, Leivestad T, Hallan S, Iversen BM. Low birth weight increases risk for end-stage renal disease. J Am Soc Nephrol. 2008;19:151–7.

Article  PubMed  PubMed Central  Google Scholar 

Henriksen T, Clausen T. The fetal origins hypothesis: placental insufficiency and inheritance versus maternal malnutrition in well-nourished populations. Acta Obstet Gynecol Scand. 2002;81:112–4.

Article  PubMed  Google Scholar 

Cox P, Marton T. Pathological assessment of intrauterine growth restriction. Best Pract Res Clin Obstet Gynaecol. 2009;23:751–64.

Article  PubMed  Google Scholar 

Janot M, Cortes-Dubly ML, Rodriguez S, Huynh-Do U. Bilateral uterine vessel ligation as a model of intrauterine growth restriction in mice. Reprod Biol Endocrinol. 2014;12:62.

Article  PubMed  PubMed Central  Google Scholar 

Stewart T, Kallash M, Vehaskari VM, Hodgeson SM, Aviles DH. Increased autophagy and apoptosis in the kidneys of intrauterine growth restricted rats. Fetal Pediatr Pathol. 2019;38:185–94.

Article  CAS  PubMed  Google Scholar 

Montaldo P, Puzone S, Caredda E, Pugliese U, Inserra E, Cirillo G, Gicchino F, Campana G, Ursi D, Galdo F, et al. Impact of intrauterine growth restriction on cerebral and renal oxygenation and perfusion during the first 3 days after birth. Sci Rep. 2022;12:5067.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yi CH, Vakifahmetoglu-Norberg H, Yuan J. Integration of apoptosis and metabolism. Cold Spring Harb Symp Quant Biol. 2011;76:375–87.

Article  CAS  PubMed  Google Scholar 

Cuffe JSM, Briffa JF, Rosser S, Siebel AL, Romano T, Hryciw DH, Wlodek ME, Moritz KM. Uteroplacental insufficiency in rats induces renal apoptosis and delays nephrogenesis completion. Acta Physiol (Oxf). 2018;222:e12982.

Article  Google Scholar 

Nüsken E, Fink G, Lechner F, Voggel J, Wohlfarth M, Sprenger L, Mehdiani N, Weber LT, Liebau MC, Brachvogel B, Dötsch J, Nüsken KD. Altered molecular signatures during kidney development after intrauterine growth restriction of different origins. J Mol Med (Berl). 2020;98:395–407.

Article  PubMed  Google Scholar 

Seely JC. A brief review of kidney development, maturation, developmental abnormalities, and drug toxicity: juvenile animal relevancy. J Toxicol Pathol. 2017;30:125–33.

Article  PubMed  PubMed Central  Google Scholar 

Nyengaard JR. The quantitative development of glomerular capillaries in rats with special reference to unbiased stereological estimates of their number and sizes. Microvasc Res. 1993;45:243–61.

Article  CAS  PubMed  Google Scholar 

Schmitt R, Ellison DH, Farman N, Rossier BC, Reilly RF, Reeves WB, Oberbäumer I, Tapp R, Bachmann S. Developmental expression of sodium entry pathways in rat nephron. Am J Physiol. 1999;276:F367-381.

CAS  PubMed  Google Scholar 

Leite DFB, Cecatti JG. New approaches to fetal growth restriction: the time for metabolomics has come. Rev Bras Ginecol Obstet. 2019;41:454–62.

Article  PubMed  PubMed Central  Google Scholar 

Priante E, Verlato G, Stocchero M, Giordano G, Pirillo P, Bonadies L, Visentin S, Moschino L, Baraldi E. Metabolomic profiling of intrauterine growth-restricted preterm infants: a matched case-control study. Pediatr Res. 2022;93:1599–608.

Huang LT, Chou HC, Lin CM, Chen CM. Uteroplacental insufficiency alters the retinoid pathway and lung development in newborn rats. Pediatr Neonatol. 2016;57:508–14.

Article  PubMed  Google Scholar 

Chahoud I, Paumgartten FJ. Influence of litter size on the postnatal growth of rat pups: is there a rationale for litter-size standardization in toxicity studies? Environ Res. 2009;109:1021–7.

Article  CAS  PubMed  Google Scholar 

OECD: Test No. 421: reproduction/developmental toxicity screening test. 2016.

Gibson CL, Codreanu SG, Schrimpe-Rutledge AC, Retzlaff CL, Wright J, Mortlock DP, Sherrod SD, McLean JA, Blakely RD. Global untargeted serum metabolomic analyses nominate metabolic pathways responsive to loss of expression of the orphan metallo β-lactamase, MBLAC1. Mol Omics. 2018;14:142–55.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Storey JD, Tibshirani R. Statistical significance for genomewide studies. Proc Natl Acad Sci U S A. 2003;100:9440–5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Feng Q, Liu Z, Zhong S, Li R, Xia H, Jie Z, Wen B, Chen X, Yan W, Fan Y, et al. Integrated metabolomics and metagenomics analysis of plasma and urine identified microbial metabolites associated with coronary heart disease. Sci Rep. 2016;6:22525.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wishart DS, Jewison T, Guo AC, Wilson M, Knox C, Liu Y, Djoumbou Y, Mandal R, Aziat F, Dong E, et al. HMDB 3.0–the human metabolome database in 2013. Nucleic Acids Res. 2013;41:D801-807.

Article  CAS  PubMed  Google Scholar 

Smith CA, O’Maille G, Want EJ, Qin C, Trauger SA, Brandon TR, Custodio DE, Abagyan R, Siuzdak G. METLIN: a metabolite mass spectral database. Ther Drug Monit. 2005;27:747–51.

Article  CAS  PubMed  Google Scholar 

Horai H, Arita M, Kanaya S, Nihei Y, Ikeda T, Suwa K, Ojima Y, Tanaka K, Tanaka S, Aoshima K, et al. MassBank: a public repository for sharing mass spectral data for life sciences. J Mass Spectrom. 2010;45:703–14.

Article  CAS  PubMed  Google Scholar 

Yi Y, Fang Y, Wu K, Liu Y, Zhang W. Comprehensive gene and pathway analysis of cervical cancer progression. Oncol Lett. 2020;19:3316–32.

CAS  PubMed  PubMed Central  Google Scholar 

Guitart-Mampel M, Juarez-Flores DL, Youssef L, Moren C, Garcia-Otero L, Roca-Agujetas V, Catalan-Garcia M, Gonzalez-Casacuberta I, Tobias E, Milisenda JC, et al. Mitochondrial implications in human pregnancies with intrauterine growth restriction and associated cardiac remodelling. J Cell Mol Med. 2019;23:3962–73.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wlodek ME, Mibus A, Tan A, Siebel AL, Owens JA, Moritz KM. Normal lactational environment restores nephron endowment and prevents hypertension after placental restriction in the rat. J Am Soc Nephrol. 2007;18:1688–96.

Article  CAS  PubMed  Google Scholar 

Wlodek ME, Westcott K, Siebel AL, Owens JA, Moritz KM. Growth restriction before or after birth reduces nephron number and increases blood pressure in male rats. Kidney Int. 2008;74:187–95.

Article  PubMed  Google Scholar 

Schmidt IM, Chellakooty M, Boisen KA, Damgaard IN, Mau Kai C, Olgaard K, Main KM. Impaired kidney growth in low-birth-weight children: distinct effects of maturity and weight for gestational age. Kidney Int. 2005;68:731–40.

Article  PubMed  Google Scholar 

Spencer J, Wang Z, Hoy W. Low birth weight and reduced renal volume in Aboriginal children. Am J Kidney Dis. 2001;37:915–20.

Article  CAS  PubMed  Google Scholar 

Schreuder MF, Nauta J. Prenatal programming of nephron number and blood pressure. Kidney Int. 2007;72:265–8.

Article  CAS  PubMed  Google Scholar 

Schooneman MG, Vaz FM, Houten SM, Soeters MR. Acylcarnitines: reflecting or inflicting insulin resistance? Diabetes. 2013;62:1–8.

Article  CAS  PubMed  Google Scholar 

Mihalik SJ, Goodpaster BH, Kelley DE, Chace DH, Vockley J, Toledo FG, DeLany JP. Increased levels of plasma acylcarnitines in obesity and type 2 diabetes and identification of a marker of glucolipotoxicity. Obesity (Silver Spring). 2010;18:1695–700.

Article  CAS  PubMed  Google Scholar 

Dambrova M, Makrecka-Kuka M, Kuka J, Vilskersts R, Nordberg D, Attwood MM, Smesny S, Sen ZD, Guo AC, Oler E, et al. Acylcarnitines: nomenclature, biomarkers, therapeutic potential, drug targets, and clinical trials. Pharmacol Rev. 2022;74:506–51.

Article  CAS  PubMed  Google Scholar 

Liu J, Chen XX, Li XW, Fu W, Zhang WQ. Metabolomic research on newborn infants with intrauterine growth restriction. Medicine (Baltimore). 2016;95:e3564.

Article  CAS  PubMed  Google Scholar 

Tanaka H, Sirich TL, Plummer NS, Weaver DS, Meyer TW. An enlarged profile of uremic solutes. PLoS One. 2015;10:e0135657.

Article  PubMed  PubMed Central  Google Scholar 

Toyohara T, Akiyama Y, Suzuki T, Takeuchi Y, Mishima E, Tanemoto M, Momose A, Toki N, Sato H, Nakayama M, et al. Metabolomic profiling of uremic solutes in CKD patients. Hypertens Res. 2010;33:944–52.

Article  PubMed 

留言 (0)

沒有登入
gif