GBD 2019 Blindness and Vision Impairment Collaborators, Vision Loss Expert Group of the Global Burden of Disease Study. Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: the right to sight: an analysis for the Global Burden of Disease Study. Lancet Glob Health. 2021;9(2):e144–e60.
Caras IW, Collins LR, Creasey AA. A stem cell journey in ophthalmology: from the bench to the clinic. Stem Cells Transl Med. 2021;10(12):1581–7.
Article PubMed PubMed Central Google Scholar
Kolli S, Ahmad S, Lako M, Figueiredo F. Successful clinical implementation of corneal epithelial stem cell therapy for treatment of unilateral limbal stem cell deficiency. Stem Cells. 2010;28(3):597–610.
Article CAS PubMed Google Scholar
Figueiredo FC, Glanville JM, Arber M, Carr E, Rydevik G, Hogg J, et al. A systematic review of cellular therapies for the treatment of limbal stem cell deficiency affecting one or both eyes. Ocul Surf. 2021;20:48–61.
Article CAS PubMed Google Scholar
Foster JW, Wahlin K, Adams SM, Birk DE, Zack DJ, Chakravarti S. Cornea organoids from human induced pluripotent stem cells. Sci Rep. 2017;7(1):41286.
Article CAS PubMed PubMed Central Google Scholar
Susaimanickam PJ, Maddileti S, Pulimamidi VK, Boyinpally SR, Naik RR, Naik MN, et al. Generating minicorneal organoids from human induced pluripotent stem cells. Development. 2017;144(13):2338–51.
Chichagova V, Dorgau B, Felemban M, Georgiou M, Armstrong L, Lako M. Differentiation of retinal organoids from human pluripotent stem cells. Curr Protoc Stem Cell Biol. 2019;50(1):e95.
Mellough CB, Collin J, Khazim M, White K, Sernagor E, Steel DH, et al. IGF-1 Signaling plays an important role in the formation of three-dimensional laminated neural retina and other ocular structures from human embryonic stem cells. Stem Cells. 2015;33(8):2416–30.
Capowski EE, Samimi K, Mayerl SJ, Phillips MJ, Pinilla I, Howden SE, et al. Reproducibility and staging of 3D human retinal organoids across multiple pluripotent stem cell lines. Development. 2019;146(1):dev171686.
Kruczek K, Swaroop A. Pluripotent stem cell-derived retinal organoids for disease modeling and development of therapies. Stem Cells. 2020;38(10):1206–15.
Hallam D, Hilgen G, Dorgau B, Zhu L, Yu M, Bojic S, et al. Human-induced pluripotent stem cells generate light responsive retinal organoids with variable and nutrient-dependent efficiency. Stem Cells. 2018;36(10):1535–51.
Article CAS PubMed Google Scholar
Zhang X, Wang W, Jin ZB. Retinal organoids as models for development and diseases. Cell Regen. 2021;10(1):33.
O'Hara-Wright M, Gonzalez-Cordero A. Retinal organoids: a window into human retinal development. Development. 2020;147(24):dev189746.
Grigoryan EN. Self-organization of the retina during eye development, retinal regeneration in vivo, and in retinal 3D organoids in vitro. Biomedicines. 2022;10(6):1458.
Article PubMed PubMed Central Google Scholar
Kruczek K, Qu Z, Gentry J, Fadl BR, Gieser L, Hiriyanna S, et al. Gene therapy of dominant CRX-Leber congenital amaurosis using patient stem cell-derived retinal organoids. Stem Cell Rep. 2021;16(2):252–63.
Achberger K, Cipriano M, Düchs MJ, Schön C, Michelfelder S, Stierstorfer B, et al. Human stem cell-based retina on chip as new translational model for validation of AAV retinal gene therapy vectors. Stem Cell Rep. 2021;16(9):2242–56.
Llonch S, Carido M, Ader M. Organoid technology for retinal repair. Dev Biol. 2018;433(2):132–43.
Article CAS PubMed Google Scholar
Zou T, Gao L, Zeng Y, Li Q, Li Y, Chen S, et al. Organoid-derived C-Kit+/SSEA4− human retinal progenitor cells promote a protective retinal microenvironment during transplantation in rodents. Nat Commun. 2019;10(1):1205.
Article PubMed PubMed Central Google Scholar
Wadkin LE, Orozco-Fuentes S, Neganova I, Lako M, Parker NG, Shukurov A. A mathematical modelling framework for the regulation of intra-cellular OCT4 in human pluripotent stem cells. PLoS ONE. 2021;16(8):e0254991.
Pir P, Le Novère N. Mathematical models of pluripotent stem cells: at the dawn of predictive regenerative medicine. In: Schmitz U, Wolkenhauer O, editors. Systems Medicine. Springer, New York: New York, NY; 2016. p. 331–50.
Wadkin LE, Orozco-Fuentes S, Neganova I, Lako M, Shukurov A, Parker NG. The recent advances in the mathematical modelling of human pluripotent stem cells. SN Appl Sci. 2020;2(2):276.
Article CAS PubMed PubMed Central Google Scholar
Srinivasan M, Thangaraj SR, Ramasubramanian K, Thangaraj PP, Ramasubramanian KV. Exploring the current trends of artificial intelligence in stem cell therapy: a systematic review. Cureus. 2021;13(12):e20083.
Coronnello C, Francipane MG. Moving towards induced pluripotent stem cell-based therapies with artificial intelligence and machine learning. Stem Cell Rev Rep. 2022;18(2):559–69.
Le Q, Xu J, Deng SX. The diagnosis of limbal stem cell deficiency. Ocul Surf. 2018;16(1):58–69.
Miri A, Alomar T, Nubile M, Al-Aqaba M, Lanzini M, Fares U, et al. In vivo confocal microscopic findings in patients with limbal stem cell deficiency. Br J Ophthalmol. 2012;96(4):523–9.
iu N, Ruiz M, Garrido SG, Yan Y, Steinecke D, Rao E, et al. Automatic estimation of limbal stem cell densities in cultured epithelial cell microscopy imaging. In: 2021 IEEE 21st International Conference on Bioinformatics and Bioengineering (BIBE). 2021. p. 1–6.
Makarenko I, Wadkin LE, Parker NG, Lako M, Figueiredo F, Shukurov A. Post-operative monitoring of human corneal cells based on in-vivo confocal microscopy study. Manuscript in preparation. 2023.
LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–44.
Article CAS PubMed Google Scholar
Razzak MI, Naz S, Zaib A. Deep learning for medical image processing: overview, challenges and the future. In: Dey N, Ashour AS, Borra S, editors. Classification in BioApps: Automation of decision making. Cham: Springer International Publishing; 2018. p. 323–50.
•• Liu P, Panchavati S, Pleasure M, Siu N, Bonnet C, Deng S, et al. MobileNetV2 based diagnosis and grading of limbal stem cell deficiency. In: 2022 IEEE 22nd International Conference on Bioinformatics and Bioengineering (BIBE). 2022. p. 174–9. This work applies a CNN to diagnose and classify the severity grading of LSCD from IVCM images showing the power of deep learning techniques for automated diagnostic imaging.
Koseoglu ND, Beam A, Hamrah P. The utilization of artificial intelligence for corneal nerve analyses of in vivo confocal microscopy images for the diagnosis of neuropathic corneal pain. Invest Ophthalmol Vis Sci. 2018;59(9):3440.
Salahouddin T, Petropoulos IN, Ferdousi M, Ponirakis G, Asghar O, Alam U, et al. Artificial intelligence-based classification of diabetic peripheral neuropathy from corneal confocal microscopy images. Diabetes Care. 2021;44(7):e151–3.
Article CAS PubMed PubMed Central Google Scholar
Alyoubi WL, Shalash WM, Abulkhair MF. Diabetic retinopathy detection through deep learning techniques: a review. Inform Med Unlocked. 2020;20:100377.
Elsawy A, Eleiwa T, Chase C, Ozcan E, Tolba M, Feuer W, et al. Multidisease deep learning neural network for the diagnosis of corneal diseases. Am J Ophthalmol. 2021;226:252–61.
•• Ortolan D, Sharma R, Volkov A, Maminishkis A, Hotaling NA, Huryn LA, et al. Single-cell-resolution map of human retinal pigment epithelium helps discover subpopulations with differential disease sensitivity. Proc Natl Acad Sci USA. 2022;119(19):e2117553119. This paper develops a deep learning approach to generate a complete morphometric retinal pigment epithelium (RPE) map of the human eye leading to the identification of statistically different RPE subpopulations.
Bhatia SK, Rashid A, Chrenek MA, Zhang Q, Bruce BB, Klein M, et al. Analysis of RPE morphometry in human eyes. Mol Vis. 2016;22:898–916.
CAS PubMed PubMed Central Google Scholar
Shuzui E, Kim MH, Kino-Oka M. Anomalous cell migration triggers a switch to deviation from the undifferentiated state in colonies of human induced pluripotent stems on feeder layers. J Biosci Bioeng. 2019;127(2):246–55.
Article CAS PubMed Google Scholar
Wadkin LE, Orozco-Fuentes S, Neganova I, Swan G, Laude A, Lako M, et al. Correlated random walks of human embryonic stem cells in vitro. Phys Biol. 2018;15(5):056006.
Li L, Wang BH, Wang S, Moalim-Nour L, Mohib K, Lohnes D, et al. Individual cell movement, asymmetric colony expansion, rho-associated kinase, and E-cadherin impact the clonogenicity of human embryonic stem cells. Biophys J. 2010;98(11):2442–51.
Article CAS PubMed PubMed Central Google Scholar
• Wang Y, Mao H, Yi Z. Stem cell motion-tracking by using deep neural networks with multi-output. Neural Comput Appl. 2019;31(8):3455–67. This paper applies a deep learning approach to identify features of hPSCs for cell-tracking and mitosis detection from microscopy images, highlighting the promise of such techniques for automatic cell tracking.
Bharti K, Miller SS, Arnheiter H. The new paradigm: retinal pigment epithelium cells generated from embryonic or induced pluripotent stem cells. Pigment Cell Melanoma Res. 2011;24(1):21–34.
Hunt NC, Hallam D, Karimi A, Mellough CB, Chen J, Steel DHW, et al. 3D culture of human pluripotent stem cells in RGD-alginate hydrogel improves retinal tissue development. Acta Biomater. 2017;49:329–43.
Article CAS PubMed Google Scholar
Singh R, Cuzzani O, Binette F, Sternberg H, West MD, Nasonkin IO. Pluripotent stem cells for retinal tissue engineering: current status and future prospects. Stem Cell Rev Rep. 2018;14(4):463–83.
Mellough CB, Sernagor E, Moreno-Gimeno I, Steel DHW, Lako M. Efficient stage-specific differentiation of human pluripotent stem cells toward retinal photoreceptor cells. Stem Cells. 2012;30(4):673–86.
Article CAS PubMed Google Scholar
He J, Ou S, Ren J, Sun H, He X, Zhao Z, et al. Tissue engineered corneal epithelium derived from clinical-grade human embryonic stem cells. Ocul Surf. 2020;18(4):672–80.
da Mata Martins TM, da Silva CP, Rodrigues MA, de Carvalho JL, de Souza JE, de Carvalho Oliveira JA, et al. Epithelial basement membrane of human decellularized cornea as a suitable substrate for differentiation of embryonic stem cells into corneal epithelial-like cells. Mater Sci Eng C. 2020;116:111215.
Mikhailova A, Ilmarinen T, Uusitalo H, Skottman H. Small-molecule induction promotes corneal epithelial cell differentiation from human induced pluripotent stem cells. Stem Cell Rep. 2014;2(2):219–31.
DiStefano T, Chen HY, Panebianco C, Kaya KD, Brooks MJ, Gieser L, et al. Accelerated and improved differentiation of retinal organoids from pluripotent stem cells in rotating-wall vessel bioreactors. Stem Cell Rep. 2018;10(1):300–13.
Teschendorff AE, Feinberg AP. Statistical mechanics meets single-cell biology. Nat Rev Genet. 2021;22(7):459–76.
Article CAS PubMed PubMed Central Google Scholar
Pisu M, Concas A, Cao G. A novel simulation model for stem cells differentiation. J Biotechnol. 2007;130(2):171–82.
Article CAS PubMed Google Scholar
Pisu M, Concas A, Fadda S, Cincotti A, Cao G. A simulation model for stem cells differentiation into specialized cells of non-connective tissues. Comput Biol Chem. 2008;32(5):338–44.
留言 (0)