Prenatal Therapy for Congenital Diaphragmatic Hernia and Myelomeningocele: Advances in Particle-Based Delivery

Zu H, Gao D. Non-viral vectors in gene therapy: recent development, challenges, and prospects. AAPS J. 2021;23(4):78.

Article  PubMed  Google Scholar 

Butt MH, et al. Appraisal for the potential of viral and nonviral vectors in gene therapy: a review. Genes (Basel). 2022;13(8):1370.

Article  CAS  PubMed  Google Scholar 

Lee JH, Yeo Y. Controlled drug release from pharmaceutical nanocarriers. Chem Eng Sci. 2015;125:75–84.

Article  CAS  PubMed  Google Scholar 

Yao Y, et al. Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance. Front Mol Biosci. 2020;7:193.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Swingle KL, et al. Amniotic fluid stabilized lipid nanoparticles for in utero intra-amniotic mRNA delivery. J Control Release. 2022;341:616–33.

Article  CAS  PubMed  Google Scholar 

Riley RS, et al. Ionizable lipid nanoparticles for in utero mRNA delivery. Sci Adv. 2021;7(3):eaba1028.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bose SK, et al. In utero adenine base editing corrects multi-organ pathology in a lethal lysosomal storage disease. Nat Commun. 2021;12(1):4291.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ricciardi AS, et al. In utero nanoparticle delivery for site-specific genome editing. Nat Commun. 2018;9(1):2481.

Article  PubMed  PubMed Central  Google Scholar 

• Deprest JA, et al. Randomized trial of fetal surgery for severe left diaphragmatic hernia. N Engl J Med. 2021;385(2):107–18. Findings from this important randomized clinical trial provided evidence that the use of FETO for CDH resulted in significant benefit over observation or expectant management alone.

Article  PubMed  PubMed Central  Google Scholar 

Montalva L, et al. Neurodevelopmental impairment in children with congenital diaphragmatic hernia: not an uncommon complication for survivors. J Pediatr Surg. 2020;55(4):625–34.

Article  PubMed  Google Scholar 

Montalva L, Zani A. Assessment of the nitrofen model of congenital diaphragmatic hernia and of the dysregulated factors involved in pulmonary hypoplasia. Pediatr Surg Int. 2019;35(1):41–61.

Article  PubMed  Google Scholar 

Greer JJ. Current concepts on the pathogenesis and etiology of congenital diaphragmatic hernia. Respir Physiol Neurobiol. 2013;189(2):232–40.

Article  PubMed  Google Scholar 

Goncalves AN, Correia-Pinto J, Nogueira-Silva C. ROBO2 signaling in lung development regulates SOX2/SOX9 balance, branching morphogenesis and is dysregulated in nitrofen-induced congenital diaphragmatic hernia. Respir Res. 2020;21(1):302.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mous DS, et al. Pulmonary vascular development in congenital diaphragmatic hernia. Eur Respir Rev. 2018;27(147).

Wynn J, Yu L, Chung WK. Genetic causes of congenital diaphragmatic hernia. Semin Fetal Neonatal Med. 2014;19(6):324–30.

Article  PubMed  PubMed Central  Google Scholar 

Cushing L, et al. The roles of microRNAs and protein components of the microRNA pathway in lung development and diseases. Am J Respir Cell Mol Biol. 2015;52(4):397–408.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pereira-Terra P, et al. Unique tracheal fluid microRNA signature predicts response to FETO in patients with congenital diaphragmatic hernia. Ann Surg. 2015;262(6):1130–40.

Article  PubMed  Google Scholar 

Chan YC. MicroRNA regulation of angiogenesis. In: Sen CK, editor. MicroRNA in regenerative medicine. Academic Press; 2023. p. 539–72.

Chapter  Google Scholar 

• Ullrich SJ, et al. In utero delivery of miRNA induces epigenetic alterations and corrects pulmonary pathology in congenital diaphragmatic hernia. Mol Ther Nucleic Acids. 2023;32:594–602. This study shows promise that the delivery of particle therapy carrying miRNA200b reverses the CDH phenotype and is a potentially translatable treatment.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mandl HK, et al. Optimizing biodegradable nanoparticle size for tissue-specific delivery. J Control Release. 2019;314:92–101.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kauffman AC, et al. Tunability of biodegradable poly(amine- co-ester) polymers for customized nucleic acid delivery and other biomedical applications. Biomacromolecules. 2018;19(9):3861–73.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ambegia E, et al. Stabilized plasmid-lipid particles containing PEG-diacylglycerols exhibit extended circulation lifetimes and tumor selective gene expression. Biochim Biophys Acta. 2005;1669(2):155–63.

Article  CAS  PubMed  Google Scholar 

Gao Y, et al. Multifunctional nanoparticle for cancer therapy. MedComm (2020). 2023;4(1):e187.

CAS  PubMed  Google Scholar 

• Luks VL, et al. Surface conjugation of antibodies improves nanoparticle uptake in bronchial epithelial cells. PLoS One. 2022;17(4):e0266218. This study highlights how particles can be edited to make them tissue and cell specific.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ullrich SJ, et al. Nanoparticles for delivery of agents to fetal lungs. Acta Biomater. 2021;123:346–53.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Khoshgoo N, et al. MicroRNA-200b regulates distal airway development by maintaining epithelial integrity. Sci Rep. 2017;7(1):6382.

Article  PubMed  PubMed Central  Google Scholar 

Manning SM, Jennings R, Madsen JR. Pathophysiology, prevention, and potential treatment of neural tube defects. Ment Retard Dev Disabil Res Rev. 2000;6(1):6–14.

Article  CAS  PubMed  Google Scholar 

Davis BE, et al. Long-term survival of individuals with myelomeningocele. Pediatr Neurosurg. 2005;41(4):186–91.

Article  PubMed  Google Scholar 

Farrelly JS, et al. Alginate microparticles loaded with basic fibroblast growth factor induce tissue coverage in a rat model of myelomeningocele. J Pediatr Surg. 2019;54(1):80–5.

Article  PubMed  Google Scholar 

Adzick NS, et al. A randomized trial of prenatal versus postnatal repair of myelomeningocele. N Engl J Med. 2011;364(11):993–1004.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Espinoza J, et al. Two-port, exteriorized uterus, fetoscopic meningomyelocele closure has fewer adverse neonatal outcomes than open hysterotomy closure. Am J Obstet Gynecol. 2021;225(3):327e1–9.

Article  Google Scholar 

Keil C, et al. Implementation and assessment of a laparotomy-assisted three-port fetoscopic spina bifida repair program. J Clin Med. 2023;12(15):5151.

Article  PubMed  PubMed Central  Google Scholar 

Sanz Cortes M, et al. Ambulation after in-utero fetoscopic and open spina bifida repair: predictors for ambulation at 30 months. Ultrasound Obstet Gynecol. 2024. https://doi.org/10.1002/uog.27589. Epub ahead of print. PMID: 38243917.

Article  PubMed  Google Scholar 

Watanabe M, Kim AG, Flake AW. Tissue engineering strategies for fetal myelomeningocele repair in animal models. Fetal Diagn Ther. 2015;37(3):197–205.

Article  PubMed  Google Scholar 

Dionigi B, et al. Trans-amniotic stem cell therapy (TRASCET) minimizes Chiari-II malformation in experimental spina bifida. J Pediatr Surg. 2015;50(6):1037–41.

Article  PubMed  Google Scholar 

Shieh HF, et al. Transamniotic stem cell therapy (TRASCET) in a rabbit model of spina bifida. J Pediatr Surg. 2019;54(2):293–6.

Article  PubMed  Google Scholar 

Turner CG, et al. Intra-amniotic delivery of amniotic-derived neural stem cells in a syngeneic model of spina bifida. Fetal Diagn Ther. 2013;34(1):38–43.

Article  PubMed  Google Scholar 

Chen YJ, et al. Fetal surgical repair with placenta-derived mesenchymal stromal cell engineered patch in a rodent model of myelomeningocele. J Pediatr Surg. 2017. https://doi.org/10.1016/j.jpedsurg.2017.10.040. Epub ahead of print. PMID: 29096888.

Article  PubMed  PubMed Central  Google Scholar 

Galganski LA, et al. In utero treatment of myelomeningocele with placental mesenchymal stromal cells - selection of an optimal cell line in preparation for clinical trials. J Pediatr Surg. 2020;55(9):1941–6.

Article  PubMed  Google Scholar 

Stokes SC, et al. Impact of gestational age on neuroprotective function of placenta-derived mesenchymal stromal cells. J Surg Res. 2022;273:201–10.

留言 (0)

沒有登入
gif