TRASCET—Transamniotic Stem Cell Therapy

Dionigi B, Ahmed A, Brazzo J 3rd, Connors JP, Zurakowski D, Fauza DO. Partial or complete coverage of experimental spina bifida by simple intra-amniotic injection of concentrated amniotic mesenchymal stem cells. J Pediatr Surg. 2015;50(1):69–73. https://doi.org/10.1016/j.jpedsurg.2014.10.004. Epub 2015/01/20; PubMed PMID: 25598096.

Article  PubMed  Google Scholar 

Fauza DO. Transamniotic stem cell therapy: a novel strategy for the prenatal management of congenital anomalies. Pediatr Res. 2018;83(1–2):241–8. https://doi.org/10.1038/pr.2017.228. Epub 2017/09/16; PubMed PMID: 28915235.

Article  CAS  PubMed  Google Scholar 

Turner CG, Pennington EC, Gray FL, Ahmed A, Teng YD, Fauza DO. Intra-amniotic delivery of amniotic-derived neural stem cells in a syngeneic model of spina bifida. Fetal Diagn Ther. 2013;34(1):38–43. https://doi.org/10.1159/000350267. Epub 2013/05/03; PubMed PMID: 23635813.

Article  PubMed  Google Scholar 

Lee DH, Kim EY, Park S, Phi JH, Kim SK, Cho BK, Lim J, Wang KC. Reclosure of surgically induced spinal open neural tube defects by the intraamniotic injection of human embryonic stem cells in chick embryos 24 hours after lesion induction. J Neurosurg. 2006;105(2 Suppl):127–33. https://doi.org/10.3171/ped.2006.105.2.127. Epub 2006/08/23; PubMed PMID: 16922074.

Article  PubMed  Google Scholar 

Lee DH, Park S, Kim EY, Kim SK, Chung YN, Cho BK, Lee YJ, Lim J, Wang KC. Enhancement of re-closure capacity by the intra-amniotic injection of human embryonic stem cells in surgically induced spinal open neural tube defects in chick embryos. Neurosci Lett. 2004;364(2):98–100. https://doi.org/10.1016/j.neulet.2004.04.033S0304394004004719. Epub 2004/06/16; PubMed PMID: 15196686.

Article  CAS  PubMed  Google Scholar 

Lee DH, Phi JH, Kim SK, Cho BK, Kim SU, Wang KC. Enhanced reclosure of surgically induced spinal open neural tube defects in chick embryos by injecting human bone marrow stem cells into the amniotic cavity. Neurosurgery. 2010;67(1):129–35. https://doi.org/10.1227/01.NEU.0000371048.76494.0F00006123-201007000-00018. Discussion 35. Epub 2010/06/19; PubMed PMID: 20559100.

Article  PubMed  Google Scholar 

Moreno R, Martinez-Gonzalez I, Rosal M, Nadal M, Petriz J, Gratacos E, Aran JM. Fetal liver-derived mesenchymal stem cell engraftment after allogeneic in utero transplantation into rabbits. Stem Cells Dev. 2012;21(2):284–95. https://doi.org/10.1089/scd.2010.0483. Epub 20110601; PubMed PMID: 21495909; PMCID: PMC3258433.

Article  CAS  PubMed  Google Scholar 

Klein JD, Turner CG, Steigman SA, Ahmed A, Zurakowski D, Eriksson E, Fauza DO. Amniotic mesenchymal stem cells enhance normal fetal wound healing. Stem Cells Dev. 2011;20(6):969–76. https://doi.org/10.1089/scd.2010.0379. Epub; 2010/10/29; PubMed PMID: 20979452.

Article  CAS  PubMed  Google Scholar 

Naus AEMK, Whitlock AE, Kycia I, Dang TT, Lin SB, Maskey R, Zurakowski D, Matthieu R, Fauza DO, editors. Consumption of native amniotic fluid mesenchymal stem cells in a model of intrauterine growth restriction (IUGR): further biological basis for transamniotic stem cell therapy (TRASCET) as a potential novel treatment for this disease. Washington, D. C.: American Academy of Pediatrics: Section on Surgery of the American Academy of Pediatrics Annual Conference; 2023 10/21/2023; 2023.

Pennington EC, Gray FL, Ahmed A, Zurakowski D, Fauza DO. Targeted quantitative amniotic cell profiling: a potential diagnostic tool in the prenatal management of neural tube defects. J Pediatr Surg. 2013;48(6):1205–10. https://doi.org/10.1016/j.jpedsurg.2013.03.009. Epub; 2013/07/13; PubMed PMID: 23845608.

Article  PubMed  Google Scholar 

Pennington EC, Rialon KL, Dionigi B, Ahmed A, Zurakowski D, Fauza DO. The impact of gestational age on targeted amniotic cell profiling in experimental neural tube defects. Fetal Diagn Ther. 2015;37(1):65–9. https://doi.org/10.1159/000362811. Epub 2014/08/30; PubMed PMID: 25171576.

Article  PubMed  Google Scholar 

Fauza D. Amniotic fluid and placental stem cells. Best Pract Res Clin Obstet Gynaecol. 2004;18(6):877–91. https://doi.org/10.1016/j.bpobgyn.2004.07.001. Epub 2004/12/08; PubMed PMID: 15582544.

Article  PubMed  Google Scholar 

Turner CG, Klein JD, Wang J, Thakor D, Benedict D, Ahmed A, Teng YD, Fauza DO. The amniotic fluid as a source of neural stem cells in the setting of experimental neural tube defects. Stem Cells Dev. 2013;22(4):548–53. https://doi.org/10.1089/scd.2012.0215. Epub 2012/09/11; PubMed PMID: 22957979.

Article  CAS  PubMed  Google Scholar 

Gosden CM. Amniotic fluid cell types and culture. Br Med Bull. 1983;39(4):348–54. Epub 1983/10/01; PubMed PMID: 6357346.

Article  CAS  PubMed  Google Scholar 

Hoehn H, Salk D. Morphological and biochemical heterogeneity of amniotic fluid cells in culture. Methods Cell Biol. 1982;26:11–34. Epub 1982/01/01; PubMed PMID: 6752650.

Article  CAS  PubMed  Google Scholar 

Moskowitzova K, Fauza DO. Transamniotic stem cell therapy (TRASCET): an emerging minimally invasive strategy for intrauterine stem cell delivery. Semin Perinatol. 2023;47(3):151728. https://doi.org/10.1016/j.semperi.2023.151728. Epub 20230314; PubMed PMID: 36990923.

Article  PubMed  Google Scholar 

Chalphin AV, Tracy SA, Lazow SP, Kycia I, Zurakowski D, Fauza DO. A comparison between placental and amniotic mesenchymal stem cells in transamniotic stem cell therapy for experimental gastroschisis. J Pediatr Surg. 2020;55(1):49–53. https://doi.org/10.1016/j.jpedsurg.2019.09.049. Epub 2019/11/13; PubMed PMID: 31711742.

Article  PubMed  Google Scholar 

Dionigi B, Brazzo JA 3rd, Ahmed A, Feng C, Wu Y, Zurakowski D, Fauza DO. Trans-amniotic stem cell therapy (TRASCET) minimizes Chiari-II malformation in experimental spina bifida. J Pediatr Surg. 2015;50(6):1037–41. https://doi.org/10.1016/j.jpedsurg.2015.03.034. Epub 2015/05/02; PubMed PMID: 25929798.

Article  PubMed  Google Scholar 

Feng C, Graham D, Connors JP, Brazzo J 3rd, Zurakowski D, Fauza DO. A comparison between placental and amniotic mesenchymal stem cells for transamniotic stem cell therapy (TRASCET) in experimental spina bifida. J Pediatr Surg. 2016;51(6):1010–3. https://doi.org/10.1016/j.jpedsurg.2016.02.071. Epub 2016/03/26; PubMed PMID: 27013425.

Article  PubMed  Google Scholar 

Feng C, Graham CD, Connors JP, Brazzo J 3rd, Pan AH, Hamilton JR, Zurakowski D, Fauza DO. Transamniotic stem cell therapy (TRASCET) mitigates bowel damage in a model of gastroschisis. J Pediatr Surg. 2016;51(1):56–61. https://doi.org/10.1016/j.jpedsurg.2015.10.011. Epub 2015/11/10; PubMed PMID: 26548631.

Article  PubMed  Google Scholar 

Feng C, Graham CD, Shieh HF, Brazzo JA 3rd, Connors JP, Rohrer L, Papadakis A, Zurakowski D, Fauza DO. Transamniotic stem cell therapy (TRASCET) in a leporine model of gastroschisis. J Pediatr Surg. 2017;52(1):30–4. https://doi.org/10.1016/j.jpedsurg.2016.10.016. Epub 2016/11/12; PubMed PMID: 27836365.

Article  PubMed  Google Scholar 

Shieh HF, Tracy SA, Hong CR, Chalphin AV, Ahmed A, Rohrer L, Zurakowski D, Fauza DO. Transamniotic stem cell therapy (TRASCET) in a rabbit model of spina bifida. J Pediatr Surg. 2019;54(2):293–6. https://doi.org/10.1016/j.jpedsurg.2018.10.086. Epub 2018/12/07; PubMed PMID: 30518492.

Article  PubMed  Google Scholar 

Chalphin AV, Tracy SA, Kycia I, Chan C, Finkelstein A, Zurakowski D, Fauza DO. Donor mesenchymal stem cell kinetics after transamniotic stem cell therapy (TRASCET) in a rodent model of gastroschisis. J Pediatr Surg. 2020;55(3):482–5. Epub 20191128. https://doi.org/10.1016/j.jpedsurg.2019.11.005. PubMed PMID: 31813581

Lazow SP, Kycia I, Labuz DF, Zurakowski D, Fauza DO. Fetal hematogenous routing of a donor hematopoietic stem cell line in a healthy syngeneic model of transamniotic stem cell therapy. J Pediatr Surg. 2021;56(6):1233–6. https://doi.org/10.1016/j.jpedsurg.2021.02.035. Epub 2021/03/28; PubMed PMID: 33771370.

Article  PubMed  Google Scholar 

Lazow SP, Tracy SA, Chalphin AV, Kycia I, Zurakowski D, Fauza DO. Initial mechanistic screening of transamniotic stem cell therapy in the rodent model of spina bifida: host bone marrow and paracrine activity. Fetal Diagn Ther. 2020;47(12):902–11. Epub 20200902. https://doi.org/10.1159/000509244. PubMed PMID: 32877907.

Shieh HF, Ahmed A, Rohrer L, Zurakowski D, Fauza DO. Donor mesenchymal stem cell linetics after transamniotic stem cell therapy (TRASCET) for experimental spina bifida. J Pediatr Surg. 2018;53(6):1134–6. https://doi.org/10.1016/j.jpedsurg.2018.02.067. Epub 2018/03/28; PubMed PMID: 29580785.

Article  PubMed  Google Scholar 

Shieh HF, Ahmed A, Tracy SA, Zurakowski D, Fauza DO. Fetal bone marrow homing of donor mesenchymal stem cells after transamniotic stem cell therapy (TRASCET). J Pediatr Surg. 2018;53(1):174–7. Epub 20171012. https://doi.org/10.1016/j.jpedsurg.2017.10.033. PubMed PMID: 29132800.

• Tracy SA, Chalphin AV, Kycia I, Chan C, Finkelstein A, Zurakowski D, Fauza DO. Hematogenous donor cell routing pathway after transamniotic stem cell therapy. Stem Cells Dev. 2020;29(12):755–60. https://doi.org/10.1089/scd.2020.0012. Epub 2020/04/02; PubMed PMID: 32228172. This study describes how mesenchymal stem cells injected in the amniotic fluid can reach the fetal circulation. Such a routing is fundamental to TRASCET's effects.

Article  CAS  PubMed  Google Scholar 

• Labuz DF, Whitlock AE, Kycia I, Zurakowski D, Fauza DO. Routing pathway of syngeneic donor hematopoietic stem cells after simple intra-amniotic delivery. J Pediatr Surg. 2022;57(6):986–90. https://doi.org/10.1016/j.jpedsurg.2022.01.067. Epub 2022/03/14; PubMed PMID: 35279287. This study describes how hematopoietic stem cells injected in the amniotic fluid can reach the fetal circulation. Such a routing is fundamental to TRASCET's effects.

Article  PubMed  Google Scholar 

Chalphin AV, Lazow SP, Labuz DF, Tracy SA, Kycia I, Zurakowski D, Fauza DO. Transamniotic stem cell therapy for experimental congenital diaphragmatic hernia: structural, transcriptional, and cell kinetics analyses in the nitrofen model. Fetal Diagn Ther. 2021;48(5):381–91. Epub 20210414. https://doi.org/10.1159/000515277. PubMed PMID: 33853064.

Graham CD, Shieh HF, Brazzo JA 3rd, Zurakowski D, Fauza DO. Donor mesenchymal stem cells home to maternal wounds after transamniotic stem cell therapy (TRASCET) in a rodent model. J Pediatr Surg. 2017;52(6):1006–9. https://doi.org/10.1016/j.jpedsurg.2017.03.027. Epub 2017/04/02; PubMed PMID: 28363468.

Article  PubMed  Google Scholar 

Moskowitzova K, Whitlock AE, Kycia I, Zurakowski D, Fauza DO. Bidirectional feto-maternal traffic of donor mesenchymal stem cells following transamniotic stem cell therapy (TRASCET). J Pediatr Surg. 2024;59(2):290–4. Epub 20231017. https://doi.org/10.1016/j.jpedsurg.2023.10.009. PubMed PMID: 37945511.

Moskowitzova KWAE, Kycia I, Zurakowski D, Fauza DO, editors. Postnatal fate of donor hematopoietic stem cells after transamniotic stem cell therapy (TRASCET) in a healthy syngeneic model. Orlando, FL: American Pediatric Surgical Association: American Pediatric Surgery Association 2023 Annual Meeting; 05/12/2023; 2023.

Tracy SA, Chalphin AV, Lazow SP, Kycia I, Finkelstein A, Chan C, Zurakowski D, Fauza DO. Postnatal fate of donor mesenchymal stem cells after transamniotic stem cell therapy in a healthy model. J Pediatr Surg. 2020;55(6):1113–6. Epub 20200226. https://doi.org/10.1016/j.jpedsurg.2020.02.041. PubMed PMID: 32164983.

Chang YJ, Su HL, Hsu LF, Huang PJ, Wang TH, Cheng FC, Hsu LW, Tsai MS, Chen CP, Chang YL, Chao AS, Hwang SM. Isolation of human neural stem cells from the amniotic fluid with diagnosed neural tube defects. Stem Cells Dev. 2015;24(15):1740–50. https://doi.org/10.1089/scd.2014.0516. Epub 2015/04/30; PubMed PMID: 25923707; PMCID: 4507310.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Biron-Shental T, Sadeh-Mestechkin D, Amiel A. Telomere homeostasis in IUGR placentas - a review. Placenta. 2016;39:21–3. https://doi.org/10.1016/j.placenta.2015.11.006. Epub 2016/03/20; PubMed PMID: 26992670.

Article  CAS  PubMed  Google Scholar 

Krishna RG, Vishnu Bhat B, Bobby Z, Papa D, Badhe B, Kalidoss VK, Karli S. Identification of differentially methylated candidate genes and their biological significance in IUGR neonates by methylation EPIC array. J Mater-Fetal Neonatal Med: The Official Journal of the European Association of Perinatal Medicine, The Federation of Asia and Oceania Perinatal Societies, The International Society of Perinatal Obstet. 2022;35(3):525–33. https://doi.org/10.1080/14767058.2020.1727881. Epub 2020/02/25; PubMed PMID: 32091279.

Article  CAS  Google Scholar 

Mai CT, Isenburg JL, Canfield MA, Meyer RE, Correa A, Alverson CJ, Lupo PJ, Riehle-Colarusso T, Cho SJ, Aggarwal D, Kirby RS. National population-based estimates for major birth defects, 2010–2014. Birth Defects Res. 2019;111(18):1420–35. https://doi.org/10.1002/bdr2.1589. Epub 2019/10/04; PubMed PMID: 31580536; PMCID: 7203968.

Article  CAS 

留言 (0)

沒有登入
gif