RNA-Mediated Regulation of Glycolysis in Embryonic Stem Cell Pluripotency and Differentiation

Troiano A, Pacelli C, Ruggieri V, Scrima R, Addeo M, Agriesti F, et al. ZSCAN4(+) mouse embryonic stem cells have an oxidative and flexible metabolic profile. Embo Rep. 2020;21(6):e48942. https://doi.org/10.15252/embr.201948942.

Article  CAS  Google Scholar 

Li D, Kishta MS, Wang J. Regulation of pluripotency and reprogramming by RNA binding proteins. Curr Top Dev Biol. 2020;138:113–38. https://doi.org/10.1016/bs.ctdb.2020.01.003.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brown S, Teo A, Pauklin S, Hannan N, Cho CH, Lim B, et al. Activin/Nodal signaling controls divergent transcriptional networks in human embryonic stem cells and in endoderm progenitors. Stem Cells. 2011;29(8):1176–85. https://doi.org/10.1002/stem.666.

Article  CAS  PubMed  Google Scholar 

Fathi A, Eisa-Beygi S, Baharvand H. Signaling molecules governing pluripotency and early lineage commitments in human pluripotent stem cells. Cell J. 2017;19(2):194–203. https://doi.org/10.22074/cellj.2016.3915.

Article  PubMed  PubMed Central  Google Scholar 

Zhou R, Wildt DE, Keefer CL, Comizzoli P. Combinations of growth factors regulating LIF/STAT3, WNT, and FGF2 pathways sustain pluripotency-related proteins in cat embryonic cells. Stem Cells Dev. 2019;28(5):329–40. https://doi.org/10.1089/scd.2018.0109.

Article  CAS  PubMed  Google Scholar 

Yu CY, Chuang CY, Kuo HC. Trans-spliced long non-coding RNA: an emerging regulator of pluripotency. Cell Mol Life Sci. 2018;75(18):3339–51. https://doi.org/10.1007/s00018-018-2862-4.

Article  CAS  PubMed  Google Scholar 

Lunt SY, Vander Heiden MG. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Bi. 2011;27:441–64. https://doi.org/10.1146/annurev-cellbio-092910-154237.

Article  CAS  Google Scholar 

Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324(5930):1029–33. https://doi.org/10.1126/science.1160809.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fawal MA, Davy A. Impact of metabolic pathways and epigenetics on neural stem cells. Epigenetics Insights. 2018;11. https://doi.org/10.1177/2516865718820946.

Article  PubMed  PubMed Central  Google Scholar 

Zhou WY, Choi M, Margineantu D, Margaretha L, Hesson J, Cavanaugh C, et al. HIF1 alpha induced switch from bivalent to exclusively glycolytic metabolism during ESC-to-EpiSC/hESC transition. Embo J. 2012;31(9):2103–16. https://doi.org/10.1038/emboj.2012.71.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang J, Khvorostov I, Hong JS, Oktay Y, Vergnes L, Nuebel E, et al. UCP2 regulates energy metabolism and differentiation potential of human pluripotent stem cells. Embo J. 2016;35(8):899. https://doi.org/10.15252/embj.201694054.

Article  PubMed  PubMed Central  Google Scholar 

Varum S, Rodrigues AS, Moura MB, Momcilovic O, Easley CA, Ramalho-Santos J, et al. Energy metabolism in human pluripotent stem cells and their differentiated counterparts. Plos One. 2011. https://doi.org/10.1371/journal.pone.0020914.

Article  PubMed  PubMed Central  Google Scholar 

Cliff TS, Wu T, Boward BR, Yin A, Yin H, Glushka JN, et al. MYC controls human pluripotent stem cell fate decisions through regulation of metabolic flux. Cell Stem Cell. 2017;21(4):502. https://doi.org/10.1016/j.stem.2017.08.018.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gu W, Gaeta X, Sahakyan A, Chan AB, Hong CS, Kim R, et al. Glycolytic metabolism plays a functional role in regulating human pluripotent stem cell state. Cell Stem Cell. 2016;19(4):476–90. https://doi.org/10.1016/j.stem.2016.08.008.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Folmes CD, Nelson TJ, Martinez-Fernandez A, Arrell DK, Lindor JZ, Dzeja PP, et al. Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. Cell Metab. 2011;14(2):264–71. https://doi.org/10.1016/j.cmet.2011.06.011.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Prigione A, Rohwer N, Hoffmann S, Mlody B, Drews K, Bukowiecki R, et al. HIF1alpha modulates cell fate reprogramming through early glycolytic shift and upregulation of PDK1-3 and PKM2. Stem Cells. 2014;32(2):364–76. https://doi.org/10.1002/stem.1552.

Article  CAS  PubMed  Google Scholar 

Takahashi S, Kobayashi S, Hiratani I. Epigenetic differences between naive and primed pluripotent stem cells. Cell Mol Life Sci. 2018;75(7):1191–203. https://doi.org/10.1007/s00018-017-2703-x.

Article  CAS  PubMed  Google Scholar 

Marks H, Kalkan T, Menafra R, Denissov S, Jones K, Hofemeister H, et al. The transcriptional and epigenomic foundations of ground state pluripotency. Cell. 2012;149(3):590–604. https://doi.org/10.1016/j.cell.2012.03.026.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou W, Choi M, Margineantu D, Margaretha L, Hesson J, Cavanaugh C, et al. HIF1alpha induced switch from bivalent to exclusively glycolytic metabolism during ESC-to-EpiSC/hESC transition. EMBO J. 2012;31(9):2103–16. https://doi.org/10.1038/emboj.2012.71.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dierolf JG, Hunter HLM, Watson AJ, Betts DH. Modulation of PKM1/2 Levels by steric blocking morpholinos alters the metabolic and pluripotent state of murine pluripotent stem cells. Stem Cells Dev. 2022;31(11–12):278–95. https://doi.org/10.1089/scd.2021.0347.

Article  CAS  PubMed  Google Scholar 

Taleahmad S, Mirzaei M, Parker LM, Hassani SN, Mollamohammadi S, Sharifi-Zarchi A, et al. Proteome analysis of ground state pluripotency. Sci Rep. 2015;5:17985. https://doi.org/10.1038/srep17985.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sun ZH, Zhu MZ, Lv P, Cheng L, Wang QF, Tian PX, et al. The long noncoding RNA Lncenc1 maintains naive states of mouse ESCs by promoting the glycolysis pathway. Stem Cell Rep. 2018;11(3):741–55. https://doi.org/10.1016/j.stemcr.2018.08.001.

Article  CAS  Google Scholar 

Tsogtbaatar E, Landin C, Minter-Dykhouse K, Folmes CDL. Energy metabolism regulates stem cell pluripotency. Front Cell Dev Biol. 2020;8:87. https://doi.org/10.3389/fcell.2020.00087.

Article  PubMed  PubMed Central  Google Scholar 

Chen FQ, Li XM, Feng X, Gao TT, Zhang WY, Cheng Z, et al. Long noncoding rnA Lx8-SINE B2 interacts with eno1 to regulate self-renewal and metabolism of embryonic stem cells. Stem Cells. 2022;40(12):1094–106. https://doi.org/10.1093/stmcls/sxac067.

Article  PubMed  Google Scholar 

•• Huppertz I, Perez-Perri JI, Mantas P, Sekaran T, Schwarzl T, Russo F, et al. Riboregulation of Enolase 1 activity controls glycolysis and embryonic stem cell differentiation. Mol Cell. 2022;82(14):2666. https://doi.org/10.1016/j.molcel.2022.05.019. This study reported the novel mechanism that acetylation driven riboregulation of ENO1 controls the catalytic activity of this glycolytic enzyme and leads to metabolic rewiring in mESCs. It also uncovered the physiological role of this mechanism on regulating ESC germ layer differentiation, especially toward endoderm formation.

Article  CAS  PubMed  Google Scholar 

• Younis S, Jouneau A, Larsson M, Oudin JF, Adenot P, Omar J, et al. Ablation of ZC3H11A causes early embryonic lethality and dysregulation of metabolic processes. Proc Natl Acad Sci USA. 2023;120(23):2216799120. https://doi.org/10.1073/pnas.2216799120. This study reported the mRNA binding protein ZC3H11A is essentially required to maintain normal differentiation and glycolic metabolism in ESCs and during early embryo development.

Article  CAS  Google Scholar 

Folmes CD, Dzeja PP, Nelson TJ, Terzic A. Metabolic plasticity in stem cell homeostasis and differentiation. Cell Stem Cell. 2012;11(5):596–606. https://doi.org/10.1016/j.stem.2012.10.002.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang J, Nuebel E, Daley GQ, Koehler CM, Teitell MA. Metabolic regulation in pluripotent stem cells during reprogramming and self-renewal. Cell Stem Cell. 2012;11(5):589–95. https://doi.org/10.1016/j.stem.2012.10.005.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim H, Jang H, Kim TW, Kang BH, Lee SE, Jeon YK, et al. Core pluripotency factors directly regulate metabolism in embryonic stem cell to maintain pluripotency. Stem Cells. 2015;33(9):2699–711. https://doi.org/10.1002/stem.2073.

Article  CAS  PubMed  Google Scholar 

Yu L, Ji KY, Zhang J, Xu Y, Ying Y, Mai T, et al. Core pluripotency factors promote glycolysis of human embryonic stem cells by activating GLUT1 enhancer. Protein Cell. 2019;10(9):668–80. https://doi.org/10.1007/s13238-019-0637-9.

Article  PubMed  PubMed Central  Google Scholar 

Rosa A, Ballarino A. Long noncoding RNA regulation of pluripotency. Stem Cells Int. 2016;2016. https://doi.org/10.1155/2016/1797692.

Article  PubMed  PubMed Central  Google Scholar 

Luo S, Lu YY, Liu LC, Yin YF, Chen CY, Han X, et al. Divergent lncRNAs regulate gene expression and lineage differentiation in pluripotent cells. Cell Stem Cell. 2016;18(5):637–52. https://doi.org/10.1016/j.stem.2016.01.024.

Article 

留言 (0)

沒有登入
gif