Troiano A, Pacelli C, Ruggieri V, Scrima R, Addeo M, Agriesti F, et al. ZSCAN4(+) mouse embryonic stem cells have an oxidative and flexible metabolic profile. Embo Rep. 2020;21(6):e48942. https://doi.org/10.15252/embr.201948942.
Li D, Kishta MS, Wang J. Regulation of pluripotency and reprogramming by RNA binding proteins. Curr Top Dev Biol. 2020;138:113–38. https://doi.org/10.1016/bs.ctdb.2020.01.003.
Article CAS PubMed PubMed Central Google Scholar
Brown S, Teo A, Pauklin S, Hannan N, Cho CH, Lim B, et al. Activin/Nodal signaling controls divergent transcriptional networks in human embryonic stem cells and in endoderm progenitors. Stem Cells. 2011;29(8):1176–85. https://doi.org/10.1002/stem.666.
Article CAS PubMed Google Scholar
Fathi A, Eisa-Beygi S, Baharvand H. Signaling molecules governing pluripotency and early lineage commitments in human pluripotent stem cells. Cell J. 2017;19(2):194–203. https://doi.org/10.22074/cellj.2016.3915.
Article PubMed PubMed Central Google Scholar
Zhou R, Wildt DE, Keefer CL, Comizzoli P. Combinations of growth factors regulating LIF/STAT3, WNT, and FGF2 pathways sustain pluripotency-related proteins in cat embryonic cells. Stem Cells Dev. 2019;28(5):329–40. https://doi.org/10.1089/scd.2018.0109.
Article CAS PubMed Google Scholar
Yu CY, Chuang CY, Kuo HC. Trans-spliced long non-coding RNA: an emerging regulator of pluripotency. Cell Mol Life Sci. 2018;75(18):3339–51. https://doi.org/10.1007/s00018-018-2862-4.
Article CAS PubMed Google Scholar
Lunt SY, Vander Heiden MG. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Bi. 2011;27:441–64. https://doi.org/10.1146/annurev-cellbio-092910-154237.
Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324(5930):1029–33. https://doi.org/10.1126/science.1160809.
Article CAS PubMed PubMed Central Google Scholar
Fawal MA, Davy A. Impact of metabolic pathways and epigenetics on neural stem cells. Epigenetics Insights. 2018;11. https://doi.org/10.1177/2516865718820946.
Article PubMed PubMed Central Google Scholar
Zhou WY, Choi M, Margineantu D, Margaretha L, Hesson J, Cavanaugh C, et al. HIF1 alpha induced switch from bivalent to exclusively glycolytic metabolism during ESC-to-EpiSC/hESC transition. Embo J. 2012;31(9):2103–16. https://doi.org/10.1038/emboj.2012.71.
Article CAS PubMed PubMed Central Google Scholar
Zhang J, Khvorostov I, Hong JS, Oktay Y, Vergnes L, Nuebel E, et al. UCP2 regulates energy metabolism and differentiation potential of human pluripotent stem cells. Embo J. 2016;35(8):899. https://doi.org/10.15252/embj.201694054.
Article PubMed PubMed Central Google Scholar
Varum S, Rodrigues AS, Moura MB, Momcilovic O, Easley CA, Ramalho-Santos J, et al. Energy metabolism in human pluripotent stem cells and their differentiated counterparts. Plos One. 2011. https://doi.org/10.1371/journal.pone.0020914.
Article PubMed PubMed Central Google Scholar
Cliff TS, Wu T, Boward BR, Yin A, Yin H, Glushka JN, et al. MYC controls human pluripotent stem cell fate decisions through regulation of metabolic flux. Cell Stem Cell. 2017;21(4):502. https://doi.org/10.1016/j.stem.2017.08.018.
Article CAS PubMed PubMed Central Google Scholar
Gu W, Gaeta X, Sahakyan A, Chan AB, Hong CS, Kim R, et al. Glycolytic metabolism plays a functional role in regulating human pluripotent stem cell state. Cell Stem Cell. 2016;19(4):476–90. https://doi.org/10.1016/j.stem.2016.08.008.
Article CAS PubMed PubMed Central Google Scholar
Folmes CD, Nelson TJ, Martinez-Fernandez A, Arrell DK, Lindor JZ, Dzeja PP, et al. Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. Cell Metab. 2011;14(2):264–71. https://doi.org/10.1016/j.cmet.2011.06.011.
Article CAS PubMed PubMed Central Google Scholar
Prigione A, Rohwer N, Hoffmann S, Mlody B, Drews K, Bukowiecki R, et al. HIF1alpha modulates cell fate reprogramming through early glycolytic shift and upregulation of PDK1-3 and PKM2. Stem Cells. 2014;32(2):364–76. https://doi.org/10.1002/stem.1552.
Article CAS PubMed Google Scholar
Takahashi S, Kobayashi S, Hiratani I. Epigenetic differences between naive and primed pluripotent stem cells. Cell Mol Life Sci. 2018;75(7):1191–203. https://doi.org/10.1007/s00018-017-2703-x.
Article CAS PubMed Google Scholar
Marks H, Kalkan T, Menafra R, Denissov S, Jones K, Hofemeister H, et al. The transcriptional and epigenomic foundations of ground state pluripotency. Cell. 2012;149(3):590–604. https://doi.org/10.1016/j.cell.2012.03.026.
Article CAS PubMed PubMed Central Google Scholar
Zhou W, Choi M, Margineantu D, Margaretha L, Hesson J, Cavanaugh C, et al. HIF1alpha induced switch from bivalent to exclusively glycolytic metabolism during ESC-to-EpiSC/hESC transition. EMBO J. 2012;31(9):2103–16. https://doi.org/10.1038/emboj.2012.71.
Article CAS PubMed PubMed Central Google Scholar
Dierolf JG, Hunter HLM, Watson AJ, Betts DH. Modulation of PKM1/2 Levels by steric blocking morpholinos alters the metabolic and pluripotent state of murine pluripotent stem cells. Stem Cells Dev. 2022;31(11–12):278–95. https://doi.org/10.1089/scd.2021.0347.
Article CAS PubMed Google Scholar
Taleahmad S, Mirzaei M, Parker LM, Hassani SN, Mollamohammadi S, Sharifi-Zarchi A, et al. Proteome analysis of ground state pluripotency. Sci Rep. 2015;5:17985. https://doi.org/10.1038/srep17985.
Article CAS PubMed PubMed Central Google Scholar
Sun ZH, Zhu MZ, Lv P, Cheng L, Wang QF, Tian PX, et al. The long noncoding RNA Lncenc1 maintains naive states of mouse ESCs by promoting the glycolysis pathway. Stem Cell Rep. 2018;11(3):741–55. https://doi.org/10.1016/j.stemcr.2018.08.001.
Tsogtbaatar E, Landin C, Minter-Dykhouse K, Folmes CDL. Energy metabolism regulates stem cell pluripotency. Front Cell Dev Biol. 2020;8:87. https://doi.org/10.3389/fcell.2020.00087.
Article PubMed PubMed Central Google Scholar
Chen FQ, Li XM, Feng X, Gao TT, Zhang WY, Cheng Z, et al. Long noncoding rnA Lx8-SINE B2 interacts with eno1 to regulate self-renewal and metabolism of embryonic stem cells. Stem Cells. 2022;40(12):1094–106. https://doi.org/10.1093/stmcls/sxac067.
•• Huppertz I, Perez-Perri JI, Mantas P, Sekaran T, Schwarzl T, Russo F, et al. Riboregulation of Enolase 1 activity controls glycolysis and embryonic stem cell differentiation. Mol Cell. 2022;82(14):2666. https://doi.org/10.1016/j.molcel.2022.05.019. This study reported the novel mechanism that acetylation driven riboregulation of ENO1 controls the catalytic activity of this glycolytic enzyme and leads to metabolic rewiring in mESCs. It also uncovered the physiological role of this mechanism on regulating ESC germ layer differentiation, especially toward endoderm formation.
Article CAS PubMed Google Scholar
• Younis S, Jouneau A, Larsson M, Oudin JF, Adenot P, Omar J, et al. Ablation of ZC3H11A causes early embryonic lethality and dysregulation of metabolic processes. Proc Natl Acad Sci USA. 2023;120(23):2216799120. https://doi.org/10.1073/pnas.2216799120. This study reported the mRNA binding protein ZC3H11A is essentially required to maintain normal differentiation and glycolic metabolism in ESCs and during early embryo development.
Folmes CD, Dzeja PP, Nelson TJ, Terzic A. Metabolic plasticity in stem cell homeostasis and differentiation. Cell Stem Cell. 2012;11(5):596–606. https://doi.org/10.1016/j.stem.2012.10.002.
Article CAS PubMed PubMed Central Google Scholar
Zhang J, Nuebel E, Daley GQ, Koehler CM, Teitell MA. Metabolic regulation in pluripotent stem cells during reprogramming and self-renewal. Cell Stem Cell. 2012;11(5):589–95. https://doi.org/10.1016/j.stem.2012.10.005.
Article CAS PubMed PubMed Central Google Scholar
Kim H, Jang H, Kim TW, Kang BH, Lee SE, Jeon YK, et al. Core pluripotency factors directly regulate metabolism in embryonic stem cell to maintain pluripotency. Stem Cells. 2015;33(9):2699–711. https://doi.org/10.1002/stem.2073.
Article CAS PubMed Google Scholar
Yu L, Ji KY, Zhang J, Xu Y, Ying Y, Mai T, et al. Core pluripotency factors promote glycolysis of human embryonic stem cells by activating GLUT1 enhancer. Protein Cell. 2019;10(9):668–80. https://doi.org/10.1007/s13238-019-0637-9.
Article PubMed PubMed Central Google Scholar
Rosa A, Ballarino A. Long noncoding RNA regulation of pluripotency. Stem Cells Int. 2016;2016. https://doi.org/10.1155/2016/1797692.
Article PubMed PubMed Central Google Scholar
Luo S, Lu YY, Liu LC, Yin YF, Chen CY, Han X, et al. Divergent lncRNAs regulate gene expression and lineage differentiation in pluripotent cells. Cell Stem Cell. 2016;18(5):637–52. https://doi.org/10.1016/j.stem.2016.01.024.
留言 (0)