Dystrophin- and Utrophin-Based Therapeutic Approaches for Treatment of Duchenne Muscular Dystrophy: A Comparative Review

Gao QQ, McNally EM. The dystrophin complex: structure, function, and implications for therapy. Compr Physiol. 2015. https://doi.org/10.1002/cphy.c140048.

Article  PubMed  PubMed Central  Google Scholar 

Muntoni F, Torelli S, Ferlini A. Dystrophin and mutations: one gene, several proteins, multiple phenotypes. Lancet Neurol. 2003. https://doi.org/10.1016/s1474-4422(03)00585-4.

Article  PubMed  Google Scholar 

Crisafulli S, Sultana J, Fontana A, Salvo F, Messina S, Trifirò G. Global epidemiology of Duchenne muscular dystrophy: an updated systematic review and meta-analysis. Orphanet J Rare Dis. 2020. https://doi.org/10.1186/s13023-020-01430-8.

Article  PubMed  PubMed Central  Google Scholar 

Broomfield J, Hill M, Guglieri M, Crowther M, Abrams K. Life expectancy in Duchenne muscular dystrophy. Neurology. 2021. https://doi.org/10.1212/WNL.0000000000012910.

Article  PubMed  PubMed Central  Google Scholar 

Dumont NA, Rudnicki MA. Targeting muscle stem cell intrinsic defects to treat Duchenne muscular dystrophy. NPJ Regen Med. 2016. https://doi.org/10.1038/npjregenmed.2016.6.

Article  PubMed  PubMed Central  Google Scholar 

Starosta A, Konieczny P. Therapeutic aspects of cell signaling and communication in Duchenne muscular dystrophy. Cell Mol Life Sci. 2021. https://doi.org/10.1007/s00018-021-03821-x.

Article  PubMed  PubMed Central  Google Scholar 

Waite A, Tinsley CL, Locke M, Blake DJ. The neurobiology of the dystrophin-associated glycoprotein complex. Ann Med. 2009. https://doi.org/10.1080/07853890802668522.

Article  PubMed  Google Scholar 

Niba ETE, Awano H, Lee T, Takeshima Y, Shinohara M, Nishio H, et al. Dystrophin dp71 subisoforms localize to the mitochondria of human cells. Life. 2021. https://doi.org/10.3390/life11090978.

Article  PubMed  PubMed Central  Google Scholar 

González E, Montañez C, Ray PN, Howard PL, García-Sierra F, Mornet D, et al. Alternative splicing regulates the nuclear or cytoplasmic localization of dystrophin Dp71. FEBS Lett. 2000. https://doi.org/10.1016/s0014-5793(00)02044-5.

Article  PubMed  Google Scholar 

Bylo M, Farewell R, Coppenrath VA, Yogaratnam D. A review of deflazacort for patients with Duchenne muscular dystrophy. Ann Pharmacother. 2020. https://doi.org/10.1177/1060028019900500.

Article  PubMed  Google Scholar 

Himič V, Davies KE. Evaluating the potential of novel genetic approaches for the treatment of Duchenne muscular dystrophy. Eur J Hum Genet. 2021. https://doi.org/10.1038/s41431-021-00811-2.

Article  PubMed  PubMed Central  Google Scholar 

Davies KE, Guiraud S. Micro-dystrophin genes bring hope of an effective therapy for Duchenne muscular dystrophy. Mol Ther. 2019. https://doi.org/10.1016/j.ymthe.2019.01.019.

Article  PubMed  PubMed Central  Google Scholar 

Crudele JM, Chamberlain JS. AAV-based gene therapies for the muscular dystrophies. Hum Mol Genet. 2019. https://doi.org/10.1093/hmg/ddz128.

Article  PubMed  PubMed Central  Google Scholar 

Rugowska A, Starosta A, Konieczny P. Epigenetic modifications in muscle regeneration and progression of Duchenne muscular dystrophy. Clin Epigenetics. 2021. https://doi.org/10.1186/s13148-021-01001-z.

Article  PubMed  PubMed Central  Google Scholar 

Ramirez MP, Anderson MJM, Kelly MD, Sundby LJ, Hagerty AR, Wenthe SJ, et al. Dystrophin missense mutations alter focal adhesion tension and mechanotransduction. Proc Natl Acad Sci USA. 2022. https://doi.org/10.1073/pnas.2205536119.

Article  PubMed  PubMed Central  Google Scholar 

Blake DJ, Weir A, Newey SE, Davies KE. Function and genetics of dystrophin and dystrophin-related proteins in muscle. Physiol Rev. 2002. https://doi.org/10.1152/physrev.00028.2001.

Article  PubMed  Google Scholar 

Le S, Yu M, Hovan L, Zhao Z, Ervasti J, Yan J. Dystrophin as a molecular shock absorber. ACS Nano. 2018. https://doi.org/10.1021/acsnano.8b05721.

Article  PubMed  PubMed Central  Google Scholar 

Farea M, Rani AQM, Maeta K, Nishio H, Matsuo M. Dystrophin Dp71ab is monoclonally expressed in human satellite cells and enhances proliferation of myoblast cells. Sci Rep. 2020. https://doi.org/10.1038/s41598-020-74157-y.

Article  PubMed  PubMed Central  Google Scholar 

Ilsley JL, Sudol M, Winder SJ. The interaction of dystrophin with β-dystroglycan is regulated by tyrosine phosphorylation. Cell Signal. 2001. https://doi.org/10.1016/s0898-6568(01)00188-7.

Article  PubMed  Google Scholar 

Swiderski K, Shaffer SA, Gallis B, Odom GL, Arnett AL, Scott Edgar J, et al. Phosphorylation within the cysteine-rich region of dystrophin enhances its association with β-dystroglycan and identifies a potential novel therapeutic target for skeletal muscle wasting. Hum Mol Genet. 2014. https://doi.org/10.1093/hmg/ddu388.

Article  PubMed  PubMed Central  Google Scholar 

Miller G, Moore CJ, Terry R, La Riviere T, Mitchell A, Piggott R, et al. Preventing phosphorylation of dystroglycan ameliorates the dystrophic phenotype in mdx mouse. Hum Mol Genet. 2012. https://doi.org/10.1093/hmg/dds293.

Article  PubMed  PubMed Central  Google Scholar 

Tozawa T, Itoh K, Yaoi T, Tando S, Umekage M, Dai H, et al. The shortest isoform of dystrophin (Dp40) interacts with a group of presynaptic proteins to form a presumptive novel complex in the mouse brain. Mol Neurobiol. 2012. https://doi.org/10.1007/s12035-012-8233-5.

Article  PubMed  PubMed Central  Google Scholar 

Johnson EK, Li B, Yoon JH, Flanigan KM, Martin PT, Ervasti J, et al. Identification of new Dystroglycan complexes in skeletal muscle. PLoS ONE. 2013. https://doi.org/10.1371/journal.pone.0073224.

Article  PubMed  PubMed Central  Google Scholar 

Rezniczek GA, Konieczny P, Nikolic B, Reipert S, Schneller D, Abrahamsberg C, et al. Plectin 1f scaffolding at the sarcolemma of dystrophic (mdx) muscle fibers through multiple interactions with β-dystroglycan. J Cell Biol. 2007. https://doi.org/10.1083/jcb.200604179.

Article  PubMed  PubMed Central  Google Scholar 

Naidoo M, Anthony K. Dystrophin Dp71 and the neuropathophysiology of Duchenne muscular dystrophy. Mol Neurobiol. 2020. https://doi.org/10.1007/s12035-019-01845-w.

Article  PubMed  Google Scholar 

Mahyoob Rani AQ, Maeta K, Kawaguchi T, Awano H, Nagai M, Nishio H, et al. Schwann cell-specific Dp116 is expressed in glioblastoma cells, revealing two novel DMD gene splicing patterns. Biochem Biophys Rep. 2019. https://doi.org/10.1016/j.bbrep.2019.100703.

Article  PubMed  PubMed Central  Google Scholar 

Lidov HGW, Kunkel LM. Dp140: Alternatively spliced isoforms in brain and kidney. Genomics. 1997. https://doi.org/10.1006/geno.1997.4905.

Article  PubMed  Google Scholar 

Crawford GE, Faulkner JA, Crosbie RH, Campbell KP, Froehner SC, Chamberlain JS. Assembly of the dystrophin-associated protein complex does not require the dystrophin COOH-terminal domain. J Cell Biol. 2000. https://doi.org/10.1083/jcb.150.6.1399.

Article  PubMed  PubMed Central  Google Scholar 

Tuffery-Giraud S, Miro J, Koenig M, Claustres M. Normal and altered pre-mRNA processing in the DMD gene. Hum Genet. 2017. https://doi.org/10.1007/s00439-017-1820-9.

Article  PubMed  Google Scholar 

Koenig M, Monaco AP, Kunkel LM. The complete sequence of dystrophin predicts a rod-shaped cytoskeletal protein. Cell. 1988. https://doi.org/10.1016/0092-8674(88)90383-2.

Article  PubMed  Google Scholar 

Koenig M, Kunkel LM. Detailed analysis of the repeat domain of dystrophin reveals four potential hinge segments that may confer flexibility. J Biol Chem. 1990. https://doi.org/10.1016/S0021-9258(19)39599-7.

Article  PubMed  Google Scholar 

Upadhyay V, Bandi S, Panja S, Saba L, Mallela KMG. Tissue-specificity of dystrophin-actin interactions: isoform-specific thermodynamic stability and actin-binding function of tandem calponin-homology domains. ACS Omega. 2020. https://doi.org/10.1021/acsomega.9b02911.

Article  PubMed  PubMed Central  Google Scholar 

Rybakova IN, Humston JL, Sonnemann KJ, Ervasti JM. Dystrophin and utrophin bind actin through distinct modes of contact. J Biol Chem. 2006. https://doi.org/10.1074/jbc.M513121200.

Article  PubMed  Google Scholar 

Hanft LM, Rybakova IN, Patel JR, Rafael-Fortney JA, Ervasti JM. Cytoplasmic γ-actin contributes to a compensatory remodeling response in dystrophin-deficient muscle. Proc Natl Acad Sci U S A. 2006. https://doi.org/10.1073/pnas.0600980103.

Article  PubMed  PubMed Central  Google Scholar 

Ursitti JA, Lee PC, Resneck WG, McNally MM, Bowman AL, O’Neill A, et al. Cloning and characterization of cytokeratins 8 and 19 in adult rat striated muscle: interaction with the dystrophin glycoprotein complex. J Biol Chem. 2004. https://doi.org/10.1074/jbc.M400128200.

Article  PubMed 

留言 (0)

沒有登入
gif