Targeted Gene Insertion: The Cutting Edge of CRISPR Drug Development with Hemophilia as a Highlight

Doudna JA. The promise and challenge of therapeutic genome editing. Nature. 2020;578(7794):229–36.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gaj T, Gersbach CA, Barbas CF 3rd. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 2013;31(7):397–405.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD. Genome editing with engineered zinc finger nucleases. Nat Rev Genet. 2010;11(9):636–46.

Article  CAS  PubMed  Google Scholar 

Joung JK, Sander JD. TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol. 2013;14(1):49–55.

Article  CAS  PubMed  Google Scholar 

Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096):816–21.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell. 2014;157(6):1262–78.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lieber MR. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem. 2010;79:181–211.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Davis AJ, Chen DJ. DNA double strand break repair via non-homologous end-joining. Transl Cancer Res. 2013;2(3):130–43.

CAS  PubMed  Google Scholar 

Wang H, Xu X. Microhomology-mediated end joining: new players join the team. Cell Biosci. 2017;7:6.

Article  PubMed  PubMed Central  Google Scholar 

Bhargava R, Onyango DO, Stark JM. Regulation of single-strand annealing and its role in genome maintenance. Trends Genet. 2016;32(9):566–75.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Morrical SW. DNA-pairing and annealing processes in homologous recombination and homology-directed repair. Cold Spring Harb Perspect Biol. 2015;7(2): a016444.

Article  PubMed  PubMed Central  Google Scholar 

Xue C, Greene EC. DNA repair pathway choices in CRISPR-Cas9-mediated genome editing. Trends Genet. 2021;37(7):639–56.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li G, Li X, Zhuang S, Wang L, Zhu Y, Chen Y, et al. Gene editing and its applications in biomedicine. Sci China Life Sci. 2022;65(4):660–700.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rezazade Bazaz M, Dehghani H. From DNA break repair pathways to CRISPR/Cas-mediated gene knock-in methods. Life Sci. 2022;295: 120409.

Article  CAS  PubMed  Google Scholar 

Wang D, Zhang F, Gao G. CRISPR-based therapeutic genome editing: strategies and in vivo delivery by AAV vectors. Cell. 2020;181(1):136–50.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Samulski RJ, Muzyczka N. AAV-mediated gene therapy for research and therapeutic purposes. Annu Rev Virol. 2014;1(1):427–51.

Article  PubMed  Google Scholar 

He X, Urip BA, Zhang Z, Ngan CC, Feng B. Evolving AAV-delivered therapeutics towards ultimate cures. J Mol Med (Berl). 2021;99(5):593–617.

Article  PubMed  Google Scholar 

Harmatz P, Lau HA, Heldermon C, Leslie N, Foo CWP, Vaidya SA, et al. EMPOWERS: a phase 1/2 clinical trial of SB-318 ZFN-mediated in vivo human genome editing for treatment of MPS I (Hurler syndrome). Mol Genet Metab. 2019;126(2):S68.

Google Scholar 

Muenzer J, Prada CE, Burton B, Lau HA, Ficicioglu C, Foo CWP, et al. CHAMPIONS: a phase 1/2 clinical trial with dose escalation of SB-913 ZFN-mediated in vivo human genome editing for treatment of MPS II (Hunter syndrome). Mol Genet Metab. 2019;126(2):S104.

Google Scholar 

Harmatz P, Prada CE, Burton BK, Lau H, Kessler CM, Cao L, et al. First-in-human in vivo genome editing via AAV-zinc-finger nucleases for mucopolysaccharidosis I/II and hemophilia B. Mol Ther. 2022;30(12):3587–600.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sheridan C. Sangamo’s landmark genome editing trial gets mixed reception. Nat Biotechnol. 2018;36(10):907–8.

Article  CAS  PubMed  Google Scholar 

Frangoul H, Altshuler D, Cappellini MD, Chen YS, Domm J, Eustace BK, et al. CRISPR-Cas9 gene editing for sickle cell disease and beta-thalassemia. N Engl J Med. 2021;384(3):252–60.

Article  CAS  PubMed  Google Scholar 

Maeder ML, Stefanidakis M, Wilson CJ, Baral R, Barrera LA, Bounoutas GS, et al. Development of a gene-editing approach to restore vision loss in Leber congenital amaurosis type 10. Nat Med. 2019;25(2):229–33.

Article  CAS  PubMed  Google Scholar 

CRISPR Therapeutics provides business update and reports first quarter 2023 Financial Results [press release]. 8 May 2023.

Hoy SM. Exagamglogene autotemcel: first approval. Mol Diagn Ther. Epub 17 Jan 2024. https://doi.org/10.1007/s40291-024-00696-z

Editas medicine announces clinical data demonstrating proof of concept of EDIT-101 from Phase 1/2 BRILLIANCE Trial [press release]. 17 November 2022.

Mancuso ME, Mahlangu JN, Pipe SW. The changing treatment landscape in haemophilia: from standard half-life clotting factor concentrates to gene editing. Lancet. 2021;397(10274):630–40.

Article  CAS  PubMed  Google Scholar 

Yang H, Ren S, Yu S, Pan H, Li T, Ge S, et al. Methods favoring homology-directed repair choice in response to CRISPR/Cas9 induced-double strand breaks. Int J Mol Sci. 2020;21(18):6461.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barzel A, Paulk NK, Shi Y, Huang Y, Chu K, Zhang F, et al. Promoterless gene targeting without nucleases ameliorates haemophilia B in mice. Nature. 2015;517(7534):360–4.

Article  CAS  PubMed  Google Scholar 

Li H, Haurigot V, Doyon Y, Li T, Wong SY, Bhagwat AS, et al. In vivo genome editing restores haemostasis in a mouse model of haemophilia. Nature. 2011;475(7355):217–21.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Anguela XM, Sharma R, Doyon Y, Miller JC, Li H, Haurigot V, et al. Robust ZFN-mediated genome editing in adult hemophilic mice. Blood. 2013;122(19):3283–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang L, Yang Y, Breton CA, White J, Zhang J, Che Y, et al. CRISPR/Cas9-mediated in vivo gene targeting corrects hemostasis in newborn and adult factor IX-knockout mice. Blood. 2019;133(26):2745–52.

Article  CAS  PubMed  Google Scholar 

Wang Q, Zhong X, Li Q, Su J, Liu Y, Mo L, et al. CRISPR-Cas9-mediated in vivo gene integration at the albumin locus recovers hemostasis in neonatal and adult hemophilia B mice. Mol Ther Methods Clin Dev. 2020;18:520–31.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ohmori T, Nagao Y, Mizukami H, Sakata A, Muramatsu S-I, Ozawa K, et al. CRISPR/Cas9-mediated genome editing via postnatal administration of AAV vector cures haemophilia B mice. Sci Rep. 2017;7(1):4159.

Article  PubMed  PubMed Central  Google Scholar 

Lisjak M, De Caneva A, Marais T, Barbon E, Biferi MG, Porro F, et al. Promoterless gene targeting approach combined to CRISPR/Cas9 efficiently corrects hemophilia B phenotype in neonatal mice. Front Genome Ed. 2022;4: 785698.

Article  PubMed  PubMed Central  Google Scholar 

Li P, Zhang L, Li Z, Xu C, Du X, Wu S. Cas12a mediates efficient and precise endogenous gene tagging via MITI: microhomology-dependent targeted integrations. Cell Mol Life Sci CMLS. 2020;77(19):3875–84.

Article  CAS  PubMed  Google Scholar 

Dai X, Park JJ, Du Y, Na Z, Lam SZ, Chow RD, et al. Massively parallel knock-in engineering of human T cells. Nat Biotechnol. 2023;41(9):1239–55.

Article  CAS  PubMed  Google Scholar 

Hino T, Omura SN, Nakagawa R, Togashi T, Takeda SN, Hiramoto T, et al. An AsCas12f-based compact genome-editing tool derived by deep mutational scanning and structural analysis. Cell. 2023;186(22):4920–35.

Article  CAS  PubMed  Google Scholar 

Wu Z, Zhang Y, Yu H, Pan D, Wang Y, Wang Y, et al. Programmed genome editing by a miniature CRISPR-Cas12f nuclease. Nat Chem Biol. 2021;17(11):1132–8.

Article  CA

留言 (0)

沒有登入
gif