Safety of Biological Therapies for Severe Asthma: An Analysis of Suspected Adverse Reactions Reported in the WHO Pharmacovigilance Database

Chung KF, Wenzel SE, Brozek JL, Bush A, Castro M, Sterk PJ, Adcock IM, Bateman ED, Bel EH, Bleecker ER, Boulet LP, Brightling C, Chanez P, Dahlen SE, Djukanovic R, Frey U, Gaga M, Gibson P, Hamid Q, Jajour NN, Mauad T, Sorkness RL, Teague WG. International ERS/ATS guidelines on definition, evaluation and treatment of severe asthma. Eur Respir J. 2014;43(2):343–73. https://doi.org/10.1183/09031936.00202013. (Erratum in: Eur Respir J. 2014 Apr;43(4):1216. Dosage error in article text. Erratum in: Eur Respir J. 2018 Jul 27;52(1): Erratum in: Eur Respir J. 2022 Jun 9;59(6)).

Article  CAS  PubMed  Google Scholar 

Vianello A, Caminati M, Andretta M, Menti AM, Tognella S, Senna G, Degli EL. Prevalence of severe asthma according to the drug regulatory agency perspective: An Italian experience. World Allergy Organ J. 2019;12(4): 100032. https://doi.org/10.1016/j.waojou.2019.100032.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen S, Golam S, Myers J, Bly C, Smolen H, Xu X. Systematic literature review of the clinical, humanistic, and economic burden associated with asthma uncontrolled by GINA Steps 4 or 5 treatment. Curr Med Res Opin. 2018;34(12):2075–88. https://doi.org/10.1080/03007995.2018.1505352.

Article  PubMed  Google Scholar 

Mavissakalian M, Brady S. The current state of biologic therapies for treatment of refractory asthma. Clin Rev Allergy Immunol. 2020;59(2):195–207. https://doi.org/10.1007/s12016-020-08776-8.

Article  CAS  PubMed  Google Scholar 

Holguin F, Cardet JC, Chung KF, Diver S, Ferreira DS, Fitzpatrick A, Gaga M, Kellermeyer L, Khurana S, Knight S, McDonald VM, Morgan RL, Ortega VE, Rigau D, Subbarao P, Tonia T, Adcock IM, Bleecker ER, Brightling C, Boulet LP, Cabana M, Castro M, Chanez P, Custovic A, Djukanovic R, Frey U, Frankemölle B, Gibson P, Hamerlijnck D, Jarjour N, Konno S, Shen H, Vitary C, Bush A. Management of severe asthma: a European Respiratory Society/American Thoracic Society guideline. Eur Respir J. 2020;55(1): 1900588. https://doi.org/10.1183/13993003.00588-2019.

Article  CAS  PubMed  Google Scholar 

Russo D, Di Filippo P, Attanasi M, Lizzi M, Di Pillo S, Chiarelli F. Biologic therapy and severe asthma in children. Biomedicines. 2021;9(7):760. https://doi.org/10.3390/biomedicines9070760.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rogers L, Jesenak M, Bjermer L, Hanania NA, Seys SF, Diamant Z. Biologics in severe asthma: a pragmatic approach for choosing the right treatment for the right patient. Respir Med. 2023;218: 107414. https://doi.org/10.1016/j.rmed.2023.107414.

Article  PubMed  Google Scholar 

Lommatzsch M, Brusselle GG, Canonica GW, Jackson DJ, Nair P, Buhl R, Virchow JC. Disease-modifying anti-asthmatic drugs. Lancet. 2022;399(10335):1664–8. https://doi.org/10.1016/S0140-6736(22)00331-2.

Article  PubMed  Google Scholar 

Bjermer L, Lemiere C, Maspero J, Weiss S, Zangrilli J, Germinaro M. Reslizumab for inadequately controlled asthma with elevated blood eosinophil levels: a randomized phase 3 study. Chest. 2016;150(4):789–98. https://doi.org/10.1016/j.chest.2016.03.032.

Article  PubMed  Google Scholar 

Castro M, Zangrilli J, Wechsler ME, Bateman ED, Brusselle GG, Bardin P, Murphy K, Maspero JF, O’Brien C, Korn S. Reslizumab for inadequately controlled asthma with elevated blood eosinophil counts: results from two multicentre, parallel, double-blind, randomised, placebo-controlled, phase 3 trials. Lancet Respir Med. 2015;3(5):355–66. https://doi.org/10.1016/S2213-2600(15)00042-9. (Erratum in: Lancet Respir Med. 2015 Apr;3(4):e15. Erratum in: Lancet Respir Med. 2016 Oct;4(10 ):e50).

Article  CAS  PubMed  Google Scholar 

Hanania NA, Alpan O, Hamilos DL, Condemi JJ, Reyes-Rivera I, Zhu J, Rosen KE, Eisner MD, Wong DA, Busse W. Omalizumab in severe allergic asthma inadequately controlled with standard therapy: a randomized trial. Ann Intern Med. 2011;154(9):573–82. https://doi.org/10.7326/0003-4819-154-9-201105030-00002. (Erratum in: Ann Intern Med. 2019 Oct 1;171(7):528).

Article  PubMed  Google Scholar 

Busse W, Corren J, Lanier BQ, McAlary M, Fowler-Taylor A, Cioppa GD, van As A, Gupta N. Omalizumab, anti-IgE recombinant humanized monoclonal antibody, for the treatment of severe allergic asthma. J Allergy Clin Immunol. 2001;108(2):184–90. https://doi.org/10.1067/mai.2001.117880.

Article  CAS  PubMed  Google Scholar 

Ayres JG, Higgins B, Chilvers ER, Ayre G, Blogg M, Fox H. Efficacy and tolerability of anti-immunoglobulin E therapy with omalizumab in patients with poorly controlled (moderate-to-severe) allergic asthma. Allergy. 2004;59(7):701–8. https://doi.org/10.1111/j.1398-9995.2004.00533.x.

Article  CAS  PubMed  Google Scholar 

Ferguson GT, FitzGerald JM, Bleecker ER, Laviolette M, Bernstein D, LaForce C, Mansfield L, Barker P, Wu Y, Jison M, Goldman M; BISE Study Investigators. Benralizumab for patients with mild to moderate, persistent asthma (BISE): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Respir Med. 2017;5(7):568–76. https://doi.org/10.1016/S2213-2600(17)30190-X.

Lugogo N, Domingo C, Chanez P, Leigh R, Gilson MJ, Price RG, Yancey SW, Ortega HG. Long-term efficacy and safety of mepolizumab in patients with severe eosinophilic asthma: a multi-center, open-label, phase IIIb study. Clin Ther. 2016;38(9):2058–20701. https://doi.org/10.1016/j.clinthera.2016.07.010.

Article  CAS  PubMed  Google Scholar 

Castro M, Corren J, Pavord ID, Maspero J, Wenzel S, Rabe KF, Busse WW, Ford L, Sher L, FitzGerald JM, Katelaris C, Tohda Y, Zhang B, Staudinger H, Pirozzi G, Amin N, Ruddy M, Akinlade B, Khan A, Chao J, Martincova R, Graham NMH, Hamilton JD, Swanson BN, Stahl N, Yancopoulos GD, Teper A. Dupilumab efficacy and safety in moderate-to-severe uncontrolled asthma. N Engl J Med. 2018;378(26):2486–96. https://doi.org/10.1056/NEJMoa1804092.

Article  CAS  PubMed  Google Scholar 

Food and Drug Administration Drug Safety Communication: FDA approves label changes for asthma drug Xolair (omalizumab), including describing slightly higher risk of heart and brain adverse events. https://www.fda.gov/drugs/drug-safety-and-availability/fda-drug-safety-communication-fda-approves-label-changes-asthma-drug-xolair-omalizumab-including. Accessed June 13, 2023.

Medicines and Healthcare products Regulatory Agency (MHRA). Omalizumab: potential risk of arterial thrombotic events. https://www.gov.uk/drug-safety-update/omalizumab-potential-risk-of-arterial-thrombotic-events. Accessed June 13, 2023.

Mota D, Rama TA, Severo M, Moreira A. Potential cancer risk with omalizumab? A disproportionality analysis of the WHO’s VigiBase pharmacovigilance database. Allergy. 2021;76(10):3209–11. https://doi.org/10.1111/all.15008.

Article  CAS  PubMed  Google Scholar 

Baddini-Martinez J, Leitão Filho FS, Caetano LSB. Anaphylactic risks associated with immunobiological agents in asthma therapy. Rev Assoc Med Bras. 2023;69(3):367–9. https://doi.org/10.1590/1806-9282.20221358.

Article  PubMed  PubMed Central  Google Scholar 

Tregunno PM, Fink DB, Fernandez-Fernandez C, Lázaro-Bengoa E, Norén GN. Performance of probabilistic method to detect duplicate individual case safety reports. Drug Saf. 2014;37(4):249–58. https://doi.org/10.1007/s40264-014-0146-y.

Article  PubMed  Google Scholar 

ICH. International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use. Glossary of ICH terms and definitions; 2023. https://cioms.ch/publications/product/glossary-of-ich-terms-and-definitions. Accessed July 31, 2023.

European Medicines Agency (EMA). Inclusion/exclusion criteria for the “Important Medical Events” list. https://www.ema.europa.eu/en/documents/other/inclusion-exclusion-criteria-important-medical-events-list-meddra_en.pdf Accessed July 31, 2023.

Food and Drug Administration. FDA Online Label Repository. https://labels.fda.gov/. Accessed June 21, 2023.

European Medicines Agency (EMA). Medicines EPAR. https://www.ema.europa.eu/en/medicines/field_ema_web_categories%253Aname_field/Human/ema_group_types/ema_medicine. Accessed June 21, 2023.

Bate A, Evans SJ. Quantitative signal detection using spontaneous ADR reporting. Pharmacoepidemiol Drug Saf. 2009;18(6):427–36. https://doi.org/10.1002/pds.1742.

Article  CAS  PubMed  Google Scholar 

Wisniewski AF, Bate A, Bousquet C, Brueckner A, Candore G, Juhlin K, Macia-Martinez MA, Manlik K, Quarcoo N, Seabroke S, Slattery J, Southworth H, Thakrar B, Tregunno P, Van Holle L, Kayser M, Norén GN. Good signal detection practices: evidence from IMI PROTECT. Drug Saf. 2016;39(6):469–90. https://doi.org/10.1007/s40264-016-0405-1.

Article  PubMed  PubMed Central  Google Scholar 

Candore G, Juhlin K, Manlik K, Thakrar B, Quarcoo N, Seabroke S, Wisniewski A, Slattery J. Comparison of statistical signal detection methods within and across spontaneous reporting databases. Drug Saf. 2015;38(6):577–87. https://doi.org/10.1007/s40264-015-0289-5.

Article  CAS  PubMed  Google Scholar 

Khouri C, Revol B, Lepelley M, Mouffak A, Bernardeau C, Salvo F, Pariente A, Roustit M, Cracowski JL. A meta-epidemiological study found lack of transparency and poor reporting of disproportionality analyses for signal detection in pharmacovigilance databases. J Clin Epidemiol. 2021;139:191–8. https://doi.org/10.1016/j.jclinepi.2021.07.014.

Article  PubMed  Google Scholar 

Hauben M, Aronson JK. Defining “signal” and its subtypes in pharmacovigilance based on a systematic review of previous definitions. Drug Saf. 2009;32(2):99–110. https://doi.org/10.2165/00002018-200932020-00003.

Article  PubMed  Google Scholar 

European Medicines Agency (EMA, 2017). Guideline on good pharmacovigilance practices (GVP)—Module IX Addendum I– Methodological aspects of signal detection from spontaneous reports of suspected adverse reactions. EMA/209012/2015.

Council for International Organizations of Medical Sciences, editor. Practical aspects of signal detection in pharmacovigilance: report of CIOMS Working Group VIII. Geneva: CIOMS; 2010.

European Medicines Agency (EMA, 2016). EMA/849944/2016. Screening for adverse reactions in EudraVigilance. https://www.ema.europa.eu/en/documents/ Accessed July 12, 2023.

Grundmark B, Holmberg L, Garmo H, Zethelius B. Reducing the noise in signal detection of adverse drug reactions by standardizing the background: a pilot study on analyses of proportional reporting ratios-by-therapeutic area. Eur J Clin Pharmacol. 2014;70(5):627–35. https://doi.org/10.1007/s00228-014-1658-1.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alkabbani W, Gamble JM. Active-comparator restricted disproportionality analysis for pharmacovigilance signal detection studies of chronic disease medications: an example using sodium/glucose cotransporter 2 inhibitors. Br J Clin Pharmacol. 2023;89(2):431–9. https://doi.org/10.1111/bcp.15178.

Article  CAS  PubMed  Google Scholar 

Cohen Aubart F, Lhote R, Amoura A, Valeyre D, Haroche J, Amoura Z, Lebrun-Vignes B. Drug-induced sarcoidosis: an overview of the WHO pharmacovigilance database. J Intern Med. 2020;288(3):356–62. https://doi.org/10.1111/joim.12991.

Article  CAS  PubMed  Google Scholar 

Bettuzzi T, Drucker A, Staumont-Sallé D, Bihan K, Lebrun-Vignes B, Sbidian E. Adverse events associated with dupilumab in the World Health Organization pharmacovigilance database. J Am Acad Dermatol. 2022;86(2):431–3. https://doi.org/10.1016/j.jaad.2021.09.050.

Article  PubMed  Google Scholar 

Alroobaea R, Rubaiee S, Hanbazazah AS, Jahrami H, Garbarino S, Damiani G, Wu J, Bragazzi NL. IL-4/13 Blockade and sleep-related adverse drug reactions in over 37,000 Dupilumab reports from the World Health Organization individual case safety reporting pharmacovigilance database (VigiBase™)

留言 (0)

沒有登入
gif