Nano–Bio Interactions: Exploring the Biological Behavior and the Fate of Lipid-Based Gene Delivery Systems

van Dijk EL, et al. The third revolution in sequencing technology. Trends Genet. 2018;34(9):666–81.

Article  PubMed  Google Scholar 

Li K, et al. Bioinformatics approaches for anti-cancer drug discovery. Curr Drug Targets. 2020;21(1):3–17.

Article  PubMed  Google Scholar 

Sun YV, Hu YJ. Integrative analysis of multi-omics data for discovery and functional studies of complex human diseases. Adv Genet. 2016;93:147–90.

Article  CAS  PubMed  Google Scholar 

Joshi A, et al. Systems biology in cardiovascular disease: a multiomics approach. Nat Rev Cardiol. 2021;18(5):313–30.

Article  PubMed  Google Scholar 

Hasin Y, Seldin M, Lusis A. Multi-omics approaches to disease. Genome Biol. 2017;18(1):83.

Article  PubMed  PubMed Central  Google Scholar 

Wang M, et al. Transformative network modeling of multi-omics data reveals detailed circuits, key regulators, and potential therapeutics for Alzheimer’s disease. Neuron. 2021;109(2):257-272.e14.

Article  CAS  PubMed  Google Scholar 

Baysoy A, et al. The technological landscape and applications of single-cell multi-omics. Nat Rev Mol Cell Biol. 2023;24:1–19.

Article  Google Scholar 

SL G et al. Gene therapy clinical trials worldwide to 2017: an update. J Gene Med. 2018; 20(5).

Piguet F, Alves S, Cartier N. Clinical gene therapy for neurodegenerative diseases: past, present, and future. Hum Gene Ther. 2017;28(11):988–1003.

Article  CAS  PubMed  Google Scholar 

Dunbar CE, et al. Gene therapy comes of age. Science. 2018;359(6372):eaan4672.

Article  PubMed  Google Scholar 

Gillmore JD, et al. CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis. N Engl J Med. 2021;385(6):493–502.

Article  CAS  PubMed  Google Scholar 

Uddin F, Rudin CM, Sen T. CRISPR gene therapy: applications, limitations, and implications for the future. Front Oncol. 2020;10:1387.

Article  PubMed  PubMed Central  Google Scholar 

Ma L. A comparison of plasmid DNA and mRNA as vaccine technologies. Vaccines. 2019;7(2):37.

Article  Google Scholar 

Shigematsu H, et al. Randomized, double-blind, placebo-controlled clinical trial of hepatocyte growth factor plasmid for critical limb ischemia. Gene Ther. 2010;17(9):1152–61.

Article  CAS  PubMed  Google Scholar 

Chaudhary N, Weissman D, Whitehead KA. mRNA vaccines for infectious diseases: principles, delivery and clinical translation. Nat Rev Drug Discov. 2021;20(11):817–38.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Teo SP. Review of COVID-19 mRNA vaccines: BNT162b2 and mRNA-1273. J Pharm Pract. 2021;35:8971900211009650.

Google Scholar 

Chiriboga CA. Nusinersen for the treatment of spinal muscular atrophy. Expert Rev Neurother. 2017;17(10):955–62.

Article  CAS  PubMed  Google Scholar 

Raal FJ, et al. Mipomersen, an apolipoprotein B synthesis inhibitor, for lowering of LDL cholesterol concentrations in patients with homozygous familial hypercholesterolaemia: a randomised, double-blind, placebo-controlled trial. Lancet. 2010;375(9719):998–1006.

Article  CAS  PubMed  Google Scholar 

Hoy SM. Patisiran: first global approval. Drugs. 2018;78(15):1625–31.

Article  CAS  PubMed  Google Scholar 

Cullis PR. Hope MJ, Lipid nanoparticle systems for enabling gene therapies. Mol Ther. 2017;25(7):1467.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Eygeris Y, et al. Chemistry of lipid nanoparticles for rna delivery. Acc Chem Res. 2022;55(1):2–12.

Article  CAS  PubMed  Google Scholar 

Khalil IA, et al. Lipid nanoparticles for cell-specific in vivo targeted delivery of nucleic acids. Biol Pharm Bull. 2020;43(4):584–95.

Article  CAS  PubMed  Google Scholar 

Li M, et al. The nano delivery systems and applications of mRNA. Eur J Med Chem. 2022;227: 113910.

Article  CAS  PubMed  Google Scholar 

Tenchov R, et al. Lipid nanoparticles-from liposomes to mrna vaccine delivery, a landscape of research diversity and advancement. ACS Nano. 2021;15:16982.

Article  CAS  PubMed  Google Scholar 

Herrera VL, et al. Nucleic acid nanomedicines in Phase II/III clinical trials: translation of nucleic acid therapies for reprogramming cells. Nanomedicine (Lond). 2018;13(16):2083–98.

Article  CAS  PubMed  Google Scholar 

Loughrey D, Dahlman JE. Non-liver mRNA delivery. Acc Chem Res. 2021;55:13.

Article  PubMed  Google Scholar 

Nakamura T, et al. Extrahepatic targeting of lipid nanoparticles in vivo with intracellular targeting for future nanomedicines. Adv Drug Deliv Rev. 2022;188: 114417.

Article  CAS  PubMed  Google Scholar 

Cheng Q, et al. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR-Cas gene editing. Nat Nanotechnol. 2020;15(4):313–20.

Article  CAS  PubMed  PubMed Central  Google Scholar 

LoPresti ST, et al. The replacement of helper lipids with charged alternatives in lipid nanoparticles facilities targeted mRNA delivery to the spleen and lungs. J Control Rel. 2022;345:819.

Article  CAS  Google Scholar 

Liu S, et al. Membrane-destabilizing ionizable phospholipids for organ-selective mRNA delivery and CRISPR-Cas gene editing. Nat Mater. 2021;20:5.

Article  CAS  Google Scholar 

Dahlman JE, et al. Barcoded nanoparticles for high throughput in vivo discovery of targeted therapeutics. Proc Natl Acad Sci USA. 2017;114(8):2060–5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Paunovska K, et al. A direct comparison of in vitro and in vivo nucleic acid delivery mediated by hundreds of nanoparticles reveals a weak correlation. Nano Lett. 2018;18(3):2148–57.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sago CD, et al. High-throughput in vivo screen of functional mRNA delivery identifies nanoparticles for endothelial cell gene editing. Proc Natl Acad Sci USA. 2018;115(42):E9944-e9952.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cui L, et al. Mechanistic studies of an automated lipid nanoparticle reveal critical pharmaceutical properties associated with enhanced mRNA functional delivery in vitro and in vivo. Small. 2022;18(9): e2105832.

Article  PubMed  Google Scholar 

Young RE, et al. Lipid nanoparticle composition drives mRNA delivery to the placenta. bioRxiv. 2022;20:534.

Google Scholar 

Kimura S, Harashima H. On the mechanism of tissue-selective gene delivery by lipid nanoparticles. J Control Rel. 2023;362:797.

Article  CAS  Google Scholar 

Akinc A, et al. Targeted delivery of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms. Mol Ther. 2010;18(7):1357–64.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fenton OS, et al. Synthesis and biological evaluation of ionizable lipid materials for the in vivo delivery of messenger RNA to B lymphocytes. Adv Mater. 2017;29(33):1606944.

Article  Google Scholar 

Kimura S, et al. Novel lipid combination for delivery of plasmid DNA to immune cells in the spleen. J Control Rel. 2021;330:753–64.

Article  CAS  Google Scholar 

Algarni A, et al. In vivo delivery of plasmid DNA by lipid nanoparticles: the influence of ionizable cationic lipids on organ-selective gene expression. Biomater Sci. 2022;10:2940.

Article  CAS  PubMed  Google Scholar 

Di J, et al. Biodistribution and non-linear gene expression of mRNA LNPs Affected by delivery route and particle size. Pharm Res. 2022;39(1):105–14.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gilleron J, et al. Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape. Nat Biotechnol. 2013;31(7):638–46.

Article  CAS 

留言 (0)

沒有登入
gif