Holmes EC, Goldstein SA, Rasmussen AL, Robertson DL, Crits-Christoph A, Wertheim JO, et al. The origins of SARS-CoV-2: a critical review. Cell. 2021;184(19):4848–56. https://doi.org/10.1016/j.cell.2021.08.017.
Article CAS PubMed PubMed Central Google Scholar
Chen J. Pathogenicity and transmissibility of 2019-nCoV-A quick overview and comparison with other emerging viruses. Microbes Infect. 2020;22(2):69–71. https://doi.org/10.1016/j.micinf.2020.01.004.
Article CAS PubMed PubMed Central Google Scholar
WHO. WHO Coronavirus (COVID-19) dashboard. 2023. https://covid19.who.int/ (accessed 2023, July 28).
WHO. Statement on the fourteenth meeting of the International Health Regulations (2023, Jan 30). 2023. https://www.who.int/news/ (accessed 2023, July 28).
WHO. Statement on the fourteenth meeting of the International Health Regulations (2023, May 5). 2023 https://www.who.int/news/ (accessed 2023, July 28).
Al-Kuraishy HM, Al-Fakhrany OM, Elekhnawy E, Al-Gareeb AI, Alorabi M, De Waard M, et al. Traditional herbs against COVID-19: back to old weapons to combat the new pandemic. Eur J Med Res. 2022;27(1):186. https://doi.org/10.1186/s40001-022-00818-5.
Article CAS PubMed PubMed Central Google Scholar
Hwang YC, Lu RM, Su SC, Chiang PY, Ko SH, Ke FY, et al. Monoclonal antibodies for COVID-19 therapy and SARS-CoV-2 detection. J Biomed Sci. 2022;29(1):1. https://doi.org/10.1186/s12929-021-00784-w.
Article CAS PubMed PubMed Central Google Scholar
Lei S, Chen X, Wu J, Duan X, Men K. Small molecules in the treatment of COVID-19. Signal Transduct Target Ther. 2022;7(1):387. https://doi.org/10.1038/s41392-022-01249-8.
Article CAS PubMed PubMed Central Google Scholar
Puhl AC, Lane TR, Urbina F, Ekins S. The need for speed and efficiency: a brief review of small molecule antivirals for COVID-19. Front Drug Discov. 2022;2:837587. https://doi.org/10.3389/fddsv.2022.837587.
Zhong L, Zhao Z, Peng X, Zou J, Yang S. Recent advances in small-molecular therapeutics for COVID-19. Precis Clin Med. 2022;5(4):pbac024. https://doi.org/10.1093/pcmedi/pbac024.
Article PubMed PubMed Central Google Scholar
Yang J, Won G, Baek JY, Lee YH, Kim H, Huh K, et al. Neutralizing activity against Omicron BA.5 after tixagevimab/cilgavimab administration comparable to those after Omicron BA.1/BA.2 breakthrough infections. Front Immunol. 2023;14:1139980. https://doi.org/10.3389/fimmu.2023.1139980.
Article CAS PubMed PubMed Central Google Scholar
Jakimovski D, Eckert SP, Mirmosayyeb O, Thapa S, Pennington P, Hojnacki D, et al. Tixagevimab and cilgavimab (Evusheld™) prophylaxis prevents breakthrough COVID-19 infections in immunosuppressed population: 6-month prospective study. Vaccines (Basel). 2023;11(2):350. https://doi.org/10.3390/vaccines11020350.
Article CAS PubMed Google Scholar
Kauer V, Totschnig D, Waldenberger F, Augustin M, Karolyi M, Nägeli M, et al. Efficacy of sotrovimab (SOT), molnupiravir (MOL), and nirmatrelvir/ritponavir (N/R) and tolerability of molnupiravir in outpatients at high risk for severe COVID-19. Viruses. 2023;15(5):1181. https://doi.org/10.3390/v15051181.
Article CAS PubMed PubMed Central Google Scholar
Brant AC, Tian W, Majerciak V, Yang W, Zheng ZM. SARS-CoV-2: from its discovery to genome structure, transcription, and replication. Cell Biosci. 2021;11(1):136. https://doi.org/10.1186/s13578-021-00643-z.
Article CAS PubMed PubMed Central Google Scholar
Rodriguez-Morales AJ, Bonilla-Aldana DK, Balbin-Ramon GJ, Rabaan AA, Sah R, Paniz-Mondolfi A, et al. History is repeating itself: probable zoonotic spillover as the cause of the 2019 novel Coronavirus Epidemic. Infez Med. 2020;28(1):3–5.
Haider N, Rothman-Ostrow P, Osman AY, Arruda LB, Macfarlane-Berry L, Elton L, et al. COVID-19-zoonosis or emerging infectious disease? Front Public Health. 2020;8:596944. https://doi.org/10.3389/fpubh.2020.596944.
Article PubMed PubMed Central Google Scholar
Zhu Z, Lian X, Su X, Wu W, Marraro GA, Zeng Y. From SARS and MERS to COVID-19: a brief summary and comparison of severe acute respiratory infections caused by three highly pathogenic human coronaviruses. Respir Res. 2020;21(1):224. https://doi.org/10.1186/s12931-020-01479-w.
Article CAS PubMed PubMed Central Google Scholar
Pustake M, Tambolkar I, Giri P, Gandhi C. SARS, MERS and CoVID-19: an overview and comparison of clinical, laboratory and radiological features. J Family Med Prim Care. 2022;11(1):10–7. https://doi.org/10.4103/jfmpc.jfmpc_839_21.
Article PubMed PubMed Central Google Scholar
Wang L, Møhlenberg M, Wang P, Zhou H. Immune evasion of neutralizing antibodies by SARS-CoV-2 Omicron. Cytokine Growth Factor Rev. 2023;70:13–25. https://doi.org/10.1016/j.cytogfr.2023.03.001.
Article CAS PubMed PubMed Central Google Scholar
Yan W, Zheng Y, Zeng X, He B, Cheng W. Structural biology of SARS-CoV-2: open the door for novel therapies. Signal Transduct Target Ther. 2022;7(1):26. https://doi.org/10.1038/s41392-022-00884-5.
Article CAS PubMed PubMed Central Google Scholar
Huang Y, Yang C, Xu XF, Xu W, Liu SW. Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacol Sin. 2020;41(9):1141–9. https://doi.org/10.1038/s41401-020-0485-4.
Article CAS PubMed PubMed Central Google Scholar
Liu XH, Cheng T, Liu BY, Chi J, Shu T, Wang T. Structures of the SARS-CoV-2 spike glycoprotein and applications for novel drug development. Front Pharmacol. 2022;13:955648. https://doi.org/10.3389/fphar.2022.955648.
Article CAS PubMed PubMed Central Google Scholar
Zhou Y, Lu X, Wang X, Ying T, Tan X. Potent therapeutic strategies for COVID-19 with single-domain antibody immunoliposomes neutralizing SARS-CoV-2 and Lip/cGAMP enhancing protective immunity. Int J Mol Sci. 2023;24(4):4068. https://doi.org/10.3390/ijms24044068.
Article CAS PubMed PubMed Central Google Scholar
VanBlargan LA, Errico JM, Halfmann PJ, Zost SJ, Crowe JE Jr, Purcell LA, et al. An infectious SARS-CoV-2 B.1.1.529 Omicron virus escapes neutralization by therapeutic monoclonal antibodies. Nat Med. 2022;28(3):490–5. https://doi.org/10.1038/s41591-021-01678-y.
Article CAS PubMed PubMed Central Google Scholar
Zhang L, Jackson CB, Mou H, Ojha A, Peng H, Quinlan BD, et al. SARS-CoV-2 spike-protein D614G mutation increases virion spike density and infectivity. Nat Commun. 2020;11(1):6013. https://doi.org/10.1038/s41467-020-19808-4.
Article CAS PubMed PubMed Central Google Scholar
Jackson CB, Farzan M, Chen B, Choe H. Mechanisms of SARS-CoV-2 entry into cells. Nat Rev Mol Cell Biol. 2022;23(1):3–20. https://doi.org/10.1038/s41580-021-00418-x.
Article CAS PubMed Google Scholar
Tuccori M, Ferraro S, Convertino I, Cappello E, Valdiserra G, Blandizzi C, et al. Anti-SARS-CoV-2 neutralizing monoclonal antibodies: clinical pipeline. MAbs. 2020;12(1):1854149. https://doi.org/10.1080/19420862.2020.1854149.
Article CAS PubMed PubMed Central Google Scholar
Miljanovic D, Cirkovic A, Lazarevic I, Knezevic A, Cupic M, Banko A. Clinical efficacy of anti-SARS-CoV-2 monoclonal antibodies in preventing hospitalisation and mortality among patients infected with Omicron variants: a systematic review and meta-analysis. Rev Med Virol. 2023;33(4):e2439. https://doi.org/10.1002/rmv.2439.
Article CAS PubMed Google Scholar
McCallum M, De Marco A, Lempp FA, Tortorici MA, Pinto D, Walls AC, et al. N-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2. Cell. 2021;184(9):2332-2347.e16. https://doi.org/10.1016/j.cell.2021.03.028.
Article CAS PubMed PubMed Central Google Scholar
Hastie KM, Li H, Bedinger D, Schendel SL, Dennison SM, Li K, et al. Defining variant-resistant epitopes targeted by SARS-CoV-2 antibodies: a global consortium study. Science. 2021;374(6566):472–8. https://doi.org/10.1126/science.abh2315.
Article CAS PubMed PubMed Central Google Scholar
Suryadevara N, Shrihari S, Gilchuk P, VanBlargan LA, Binshtein E, Zost SJ, et al. Neutralizing and protective human monoclonal antibodies recognizing the N-terminal domain of the SARS-CoV-2 spike protein. Cell. 2021;184(9):2316-2331.e15. https://doi.org/10.1016/j.cell.2021.03.029.
Article CAS PubMed PubMed Central Google Scholar
Westendorf K, Žentelis S, Wang L, Foster D, Vaillancourt P, Wiggin M, et al. LY-CoV1404 (bebtelovimab) potently neutralizes SARS-CoV-2 variants. Cell Rep. 2022;39(7):110812. https://doi.org/10.1016/j.celrep.2022.110812.
Article CAS PubMed PubMed Central Google Scholar
Zhang H, Lv P, Jiang J, Liu Y, Yan R, Shu S, et al. Advances in developing ACE2 derivatives against SARS-CoV-2. Lancet Microbe. 2023;4(5):e369–78. https://doi.org/10.1016/S2666-5247(23)00011-3
留言 (0)