Population pharmacokinetics and pharmacodynamics of efmarodocokin alfa (IL-22Fc)

Xie MH, Aggarwal S, Ho WH, Foster J, Zhang Z, Stinson J, Wood WI, Goddard AD, Gurney AL (2000) Interleukin (IL)-22, a novel human cytokine that signals through the interferon receptor-related proteins CRF2-4 and IL-22R. J Biol Chem 275(40):31335–31339. https://doi.org/10.1074/jbc.M005304200

Article  CAS  PubMed  Google Scholar 

Wolk K, Kunz S, Witte E, Friedrich M, Asadullah K, Sabat R (2004) IL-22 increases the innate immunity of tissues. Immunity 21(2):241–254. https://doi.org/10.1016/j.immuni.2004.07.007

Article  CAS  PubMed  Google Scholar 

Stefanich EG, Rae J, Sukumaran S, Lutman J, Lekkerkerker A, Ouyang W, Wang X, Lee D, Danilenko DM, Diehl L, Loyet KM, Herman A (2018) Pre-clinical and translational pharmacology of a human interleukin-22 IgG fusion protein for potential treatment of infectious or inflammatory diseases. Biochem Pharmacol 152:224–235. https://doi.org/10.1016/j.bcp.2018.03.031

Article  CAS  PubMed  Google Scholar 

Rae J, Hackney J, Huang K, Keir M, Herman A (2021) Identification of an IL-22-dependent gene signature as a pharmacodynamic biomarker. Int J Mol Sci. https://doi.org/10.3390/ijms22158205

Article  PubMed  PubMed Central  Google Scholar 

Zheng Y, Valdez PA, Danilenko DM, Hu Y, Sa SM, Gong Q, Abbas AR, Modrusan Z, Ghilardi N, de Sauvage FJ, Ouyang W (2008) Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat Med 14(3):282–289. https://doi.org/10.1038/nm1720

Article  CAS  PubMed  Google Scholar 

Chang JT (2020) Pathophysiology of inflammatory bowel diseases. N Engl J Med 383(27):2652–2664. https://doi.org/10.1056/NEJMra2002697

Article  CAS  PubMed  Google Scholar 

Rothenberg ME, Wang Y, Lekkerkerker A, Danilenko DM, Maciuca R, Erickson R, Herman A, Stefanich E, Lu TT (2019) Randomized phase I healthy volunteer study of UTTR1147A (IL-22Fc): a potential therapy for epithelial injury. Clin Pharmacol Ther 105(1):177–189. https://doi.org/10.1002/cpt.1164

Article  CAS  PubMed  Google Scholar 

Steel DM, Whitehead AS (1994) The major acute phase reactants: C-reactive protein, serum amyloid P component and serum amyloid A protein. Immunol Today 15(2):81–88. https://doi.org/10.1016/0167-5699(94)90138-4

Article  CAS  PubMed  Google Scholar 

Schultz DR, Arnold PI (1990) Properties of four acute phase proteins: C-reactive protein, serum amyloid A protein, alpha 1-acid glycoprotein, and fibrinogen. Semin Arthritis Rheum 20(3):129–147. https://doi.org/10.1016/0049-0172(90)90055-k

Article  CAS  PubMed  Google Scholar 

van Beelen GA, Ostvik AE, Brenna O, Torp SH, Gustafsson BI, Sandvik AK (2013) REG gene expression in inflamed and healthy colon mucosa explored by in situ hybridisation. Cell Tissue Res 352(3):639–646. https://doi.org/10.1007/s00441-013-1592-z

Article  CAS  Google Scholar 

Wagner F, Mansfield J, Lekkerkerker AN, Wang Y, Keir M, Dash A, Butcher B, Harder B, Orozco LD, Mar JS, Chen H, Rothenberg ME. A dose escalation randomization study of efmarodocokin alfa in healthy volunteers and patients with ulcerative colitis. Gut (Epub ahead of print)

Sperinde G, Liu L, Xu K, Bentley T, Sukumaran S, Lutman J, Huang C, Williams K, Hokom M, Fischer SK (2022) Challenges with development of a pharmacokinetics assay to measure a variably glycosylated fusion protein. Bioanalysis 14(1):7–18. https://doi.org/10.4155/bio-2021-0186

Article  CAS  PubMed  Google Scholar 

Martin JC, Beriou G, Heslan M, Bossard C, Jarry A, Abidi A, Hulin P, Menoret S, Thinard R, Anegon I, Jacqueline C, Lardeux B, Halary F, Renauld JC, Bourreille A, Josien R (2016) IL-22BP is produced by eosinophils in human gut and blocks IL-22 protective actions during colitis. Mucosal Immunol 9(2):539–549. https://doi.org/10.1038/mi.2015.83

Article  CAS  PubMed  Google Scholar 

Pelczar P, Witkowski M, Perez LG, Kempski J, Hammel AG, Brockmann L, Kleinschmidt D, Wende S, Haueis C, Bedke T, Witkowski M, Krasemann S, Steurer S, Booth CJ, Busch P, Konig A, Rauch U, Benten D, Izbicki JR, Rosch T, Lohse AW, Strowig T, Gagliani N, Flavell RA, Huber S (2016) A pathogenic role for T cell-derived IL-22BP in inflammatory bowel disease. Science 354(6310):358–362. https://doi.org/10.1126/science.aah5903

Article  CAS  PubMed  Google Scholar 

CTEP. Specific instructions for the use of protocol templates for organ dysfunction studies. National Cancer Institute. https://ctep.cancer.gov/protocolDevelopment/docs/CTEP_Organ_Dysfunction_Protocol_Template.docx. Accessed 19 Dec 2022

Ordas I, Mould DR, Feagan BG, Sandborn WJ (2012) Anti-TNF monoclonal antibodies in inflammatory bowel disease: pharmacokinetics-based dosing paradigms. Clin Pharmacol Ther 91(4):635–646. https://doi.org/10.1038/clpt.2011.328

Article  CAS  PubMed  Google Scholar 

Kapel N, Meillet D, Favennec L, Magne D, Raichvarg D, Gobert JG (1992) Evaluation of intestinal clearance and faecal excretion of alpha 1-antiproteinase and immunoglobulins during Crohn’s disease and ulcerative colitis. Eur J Clin Chem Clin Biochem 30(4):197–202. https://doi.org/10.1515/cclm.1992.30.4.197

Article  CAS  PubMed  Google Scholar 

Brandse JF, van den Brink GR, Wildenberg ME, van der Kleij D, Rispens T, Jansen JM, Mathot RA, Ponsioen CY, Lowenberg M, D’Haens GR (2015) Loss of infliximab into feces is associated with lack of response to therapy in patients with severe ulcerative colitis. Gastroenterology 149(2):350-355 e352. https://doi.org/10.1053/j.gastro.2015.04.016

Article  CAS  PubMed  Google Scholar 

Wolbink GJ, Voskuyl AE, Lems WF, de Groot E, Nurmohamed MT, Tak PP, Dijkmans BA, Aarden L (2005) Relationship between serum trough infliximab levels, pretreatment C reactive protein levels, and clinical response to infliximab treatment in patients with rheumatoid arthritis. Ann Rheum Dis 64(5):704–707. https://doi.org/10.1136/ard.2004.030452

Article  CAS  PubMed  Google Scholar 

Fasanmade AA, Adedokun OJ, Ford J, Hernandez D, Johanns J, Hu C, Davis HM, Zhou H (2009) Population pharmacokinetic analysis of infliximab in patients with ulcerative colitis. Eur J Clin Pharmacol 65(12):1211–1228. https://doi.org/10.1007/s00228-009-0718-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fasanmade AA, Adedokun OJ, Olson A, Strauss R, Davis HM (2010) Serum albumin concentration: a predictive factor of infliximab pharmacokinetics and clinical response in patients with ulcerative colitis. Int J Clin Pharmacol Ther 48(5):297–308. https://doi.org/10.5414/cpp48297

Article  CAS  PubMed  Google Scholar 

Khan N, Patel D, Shah Y, Trivedi C, Yang YX (2017) Albumin as a prognostic marker for ulcerative colitis. World J Gastroenterol 23(45):8008–8016. https://doi.org/10.3748/wjg.v23.i45.8008

Article  PubMed  PubMed Central  Google Scholar 

Vermeire S, Van Assche G, Rutgeerts P (2004) C-reactive protein as a marker for inflammatory bowel disease. Inflamm Bowel Dis 10(5):661–665. https://doi.org/10.1097/00054725-200409000-00026

Article  PubMed  Google Scholar 

Dumoutier L, Lejeune D, Colau D, Renauld JC (2001) Cloning and characterization of IL-22 binding protein, a natural antagonist of IL-10-related T cell-derived inducible factor/IL-22. J Immunol 166(12):7090–7095. https://doi.org/10.4049/jimmunol.166.12.7090

Article  CAS  PubMed  Google Scholar 

Ogawa H, Fukushima K, Naito H, Funayama Y, Unno M, Takahashi K, Kitayama T, Matsuno S, Ohtani H, Takasawa S, Okamoto H, Sasaki I (2003) Increased expression of HIP/PAP and regenerating gene III in human inflammatory bowel disease and a murine bacterial reconstitution model. Inflamm Bowel Dis 9(3):162–170. https://doi.org/10.1097/00054725-200305000-00003

Article  PubMed  Google Scholar 

Choi JH, Lee MY, Kim Y, Shim JY, Han SM, Lee KA, Choi YK, Jeon HM, Baek KH (2010) Isolation of genes involved in pancreas regeneration by subtractive hybridization. Biol Chem 391(9):1019–1029. https://doi.org/10.1515/BC.2010.101

Article  CAS  PubMed  Google Scholar 

Marafini I, Di Sabatino A, Zorzi F, Monteleone I, Sedda S, Cupi ML, Antenucci C, Biancheri P, Giuffrida P, Di Stefano M, Corazza GR, Pallone F, Monteleone G (2014) Serum regenerating islet-derived 3-alpha is a biomarker of mucosal enteropathies. Aliment Pharmacol Ther 40(8):974–981. https://doi.org/10.1111/apt.12920

Article  CAS  PubMed  Google Scholar 

Mukherjee S, Partch CL, Lehotzky RE, Whitham CV, Chu H, Bevins CL, Gardner KH, Hooper LV (2009) Regulation of C-type lectin antimicrobial activity by a flexible N-terminal prosegment. J Biol Chem 284(8):4881–4888. https://doi.org/10.1074/jbc.M808077200

Article  CAS  PubMed  PubMed Central  Google Scholar 

Loonen LM, Stolte EH, Jaklofsky MT, Meijerink M, Dekker J, van Baarlen P, Wells JM (2014) REG3gamma-deficient mice have altered mucus distribution and increased mucosal inflammatory responses to the microbiota and enteric pathogens in the ileum. Mucosal Immunol 7(4):939–947. https://doi.org/10.1038/mi.2013.109

Article  CAS  PubMed  Google Scholar 

Darnaud M, Dos Santos A, Gonzalez P, Augui S, Lacoste C, Desterke C, De Hertogh G, Valentino E, Braun E, Zheng J, Boisgard R, Neut C, Dubuquoy L, Chiappini F, Samuel D, Lepage P, Guerrieri F, Dore J, Brechot C, Moniaux N, Faivre J (2018) Enteric delivery of regenerating family member 3 alpha alters the intestinal microbiota and controls inflammation in mice with colitis. Gastroenterology 154(4):1009-1023 e1014. https://doi.org/10.1053/j.gastro.2017.11.003

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif